Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator

Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2015-12, Vol.163 (6), p.1468-1483
Hauptverfasser: Khan, Mohammed Repon, Li, Liying, Pérez-Sánchez, Consuelo, Saraf, Anita, Florens, Laurence, Slaughter, Brian D., Unruh, Jay R., Si, Kausik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1483
container_issue 6
container_start_page 1468
container_title Cell
container_volume 163
creator Khan, Mohammed Repon
Li, Liying
Pérez-Sánchez, Consuelo
Saraf, Anita
Florens, Laurence
Slaughter, Brian D.
Unruh, Jay R.
Si, Kausik
description Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory. [Display omitted] •Drosophila Orb2 has two distinct physical states: monomer and amyloid-like oligomer•The monomeric Orb2 represses, whereas oligomeric Orb2 activates translation•The monomeric Orb2 removes, whereas oligomeric Orb2 protects/elongates poly(A) tail•Two proteins, CG13928 and CG4612, contribute to repression and activation, respectively The Orb2 protein switches from repressing to activating translation when it forms amyloid-like oligomers, suggesting a possible mechanism by which fleeting experiences create an enduring memory.
doi_str_mv 10.1016/j.cell.2015.11.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4674814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867415015007</els_id><sourcerecordid>1746871752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-5f31b2af36ff6a6ee2c7b5d90c0748833df6a1f034bb6e1922ba11fecc09cd7c3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaaZpX6CL4mU3dnVl_dhQCkP6FwgMhGQtZPlqosG2ppJnIHn6anAa2k26EkjfPVx9h5D3QCugID_tKovDUDEKogKoKKMvyApoq0oOir0kK0pbVjZS8TPyJqUdpbQRQrwmZ0zKuqGKrwiux_sh-D5scfK22Ax-G0aM_sHMPkzFTTRTciGOqfgaQwr7Oz-YYhM7VrgYxsIsxLDQ17iPmFKIxRwKMxVrO_ujmUN8S145MyR893iek9vv324ufpZXmx-XF-ur0grB51K4GjpmXC2dk0YiMqs60bfU5l2bpq77fA2O1rzrJELLWGcAHFpLW9srW5-TL0vu_tCN2Fuc5mgGvY9-NPFeB-P1vy-Tv9PbcNQ8S2qA54CPjwEx_DpgmvXo08mymTAckmbZIeMtz_7-h4LislGgBMsoW1CbHaaI7mkjoPpUpd7p06Q-VakBdK4yD334-y9PI3-6y8DnBcBs9Ogx6mQ9ThZ7H9HOug_-ufzfY6Cy0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746871752</pqid></control><display><type>article</type><title>Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khan, Mohammed Repon ; Li, Liying ; Pérez-Sánchez, Consuelo ; Saraf, Anita ; Florens, Laurence ; Slaughter, Brian D. ; Unruh, Jay R. ; Si, Kausik</creator><creatorcontrib>Khan, Mohammed Repon ; Li, Liying ; Pérez-Sánchez, Consuelo ; Saraf, Anita ; Florens, Laurence ; Slaughter, Brian D. ; Unruh, Jay R. ; Si, Kausik</creatorcontrib><description>Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory. [Display omitted] •Drosophila Orb2 has two distinct physical states: monomer and amyloid-like oligomer•The monomeric Orb2 represses, whereas oligomeric Orb2 activates translation•The monomeric Orb2 removes, whereas oligomeric Orb2 protects/elongates poly(A) tail•Two proteins, CG13928 and CG4612, contribute to repression and activation, respectively The Orb2 protein switches from repressing to activating translation when it forms amyloid-like oligomers, suggesting a possible mechanism by which fleeting experiences create an enduring memory.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2015.11.020</identifier><identifier>PMID: 26638074</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3' Untranslated Regions ; Amyloidogenic Proteins - chemistry ; Amyloidogenic Proteins - metabolism ; Animals ; Drosophila ; Drosophila melanogaster - metabolism ; Drosophila Proteins - chemistry ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; memory ; Memory, Long-Term ; Mice ; mRNA Cleavage and Polyadenylation Factors - chemistry ; mRNA Cleavage and Polyadenylation Factors - metabolism ; oligomerization ; Polyadenylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; protein synthesis ; RNA ; RNA-Binding Proteins - metabolism ; Serine Endopeptidases - genetics ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; translation (genetics)</subject><ispartof>Cell, 2015-12, Vol.163 (6), p.1468-1483</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-5f31b2af36ff6a6ee2c7b5d90c0748833df6a1f034bb6e1922ba11fecc09cd7c3</citedby><cites>FETCH-LOGICAL-c554t-5f31b2af36ff6a6ee2c7b5d90c0748833df6a1f034bb6e1922ba11fecc09cd7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867415015007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26638074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Mohammed Repon</creatorcontrib><creatorcontrib>Li, Liying</creatorcontrib><creatorcontrib>Pérez-Sánchez, Consuelo</creatorcontrib><creatorcontrib>Saraf, Anita</creatorcontrib><creatorcontrib>Florens, Laurence</creatorcontrib><creatorcontrib>Slaughter, Brian D.</creatorcontrib><creatorcontrib>Unruh, Jay R.</creatorcontrib><creatorcontrib>Si, Kausik</creatorcontrib><title>Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator</title><title>Cell</title><addtitle>Cell</addtitle><description>Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory. [Display omitted] •Drosophila Orb2 has two distinct physical states: monomer and amyloid-like oligomer•The monomeric Orb2 represses, whereas oligomeric Orb2 activates translation•The monomeric Orb2 removes, whereas oligomeric Orb2 protects/elongates poly(A) tail•Two proteins, CG13928 and CG4612, contribute to repression and activation, respectively The Orb2 protein switches from repressing to activating translation when it forms amyloid-like oligomers, suggesting a possible mechanism by which fleeting experiences create an enduring memory.</description><subject>3' Untranslated Regions</subject><subject>Amyloidogenic Proteins - chemistry</subject><subject>Amyloidogenic Proteins - metabolism</subject><subject>Animals</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - chemistry</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>memory</subject><subject>Memory, Long-Term</subject><subject>Mice</subject><subject>mRNA Cleavage and Polyadenylation Factors - chemistry</subject><subject>mRNA Cleavage and Polyadenylation Factors - metabolism</subject><subject>oligomerization</subject><subject>Polyadenylation</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure, Tertiary</subject><subject>protein synthesis</subject><subject>RNA</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Serine Endopeptidases - genetics</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>translation (genetics)</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1q3DAUhUVpaaZpX6CL4mU3dnVl_dhQCkP6FwgMhGQtZPlqosG2ppJnIHn6anAa2k26EkjfPVx9h5D3QCugID_tKovDUDEKogKoKKMvyApoq0oOir0kK0pbVjZS8TPyJqUdpbQRQrwmZ0zKuqGKrwiux_sh-D5scfK22Ax-G0aM_sHMPkzFTTRTciGOqfgaQwr7Oz-YYhM7VrgYxsIsxLDQ17iPmFKIxRwKMxVrO_ujmUN8S145MyR893iek9vv324ufpZXmx-XF-ur0grB51K4GjpmXC2dk0YiMqs60bfU5l2bpq77fA2O1rzrJELLWGcAHFpLW9srW5-TL0vu_tCN2Fuc5mgGvY9-NPFeB-P1vy-Tv9PbcNQ8S2qA54CPjwEx_DpgmvXo08mymTAckmbZIeMtz_7-h4LislGgBMsoW1CbHaaI7mkjoPpUpd7p06Q-VakBdK4yD334-y9PI3-6y8DnBcBs9Ogx6mQ9ThZ7H9HOug_-ufzfY6Cy0A</recordid><startdate>20151203</startdate><enddate>20151203</enddate><creator>Khan, Mohammed Repon</creator><creator>Li, Liying</creator><creator>Pérez-Sánchez, Consuelo</creator><creator>Saraf, Anita</creator><creator>Florens, Laurence</creator><creator>Slaughter, Brian D.</creator><creator>Unruh, Jay R.</creator><creator>Si, Kausik</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151203</creationdate><title>Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator</title><author>Khan, Mohammed Repon ; Li, Liying ; Pérez-Sánchez, Consuelo ; Saraf, Anita ; Florens, Laurence ; Slaughter, Brian D. ; Unruh, Jay R. ; Si, Kausik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-5f31b2af36ff6a6ee2c7b5d90c0748833df6a1f034bb6e1922ba11fecc09cd7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3' Untranslated Regions</topic><topic>Amyloidogenic Proteins - chemistry</topic><topic>Amyloidogenic Proteins - metabolism</topic><topic>Animals</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - chemistry</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>memory</topic><topic>Memory, Long-Term</topic><topic>Mice</topic><topic>mRNA Cleavage and Polyadenylation Factors - chemistry</topic><topic>mRNA Cleavage and Polyadenylation Factors - metabolism</topic><topic>oligomerization</topic><topic>Polyadenylation</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure, Tertiary</topic><topic>protein synthesis</topic><topic>RNA</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Serine Endopeptidases - genetics</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>translation (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Mohammed Repon</creatorcontrib><creatorcontrib>Li, Liying</creatorcontrib><creatorcontrib>Pérez-Sánchez, Consuelo</creatorcontrib><creatorcontrib>Saraf, Anita</creatorcontrib><creatorcontrib>Florens, Laurence</creatorcontrib><creatorcontrib>Slaughter, Brian D.</creatorcontrib><creatorcontrib>Unruh, Jay R.</creatorcontrib><creatorcontrib>Si, Kausik</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Mohammed Repon</au><au>Li, Liying</au><au>Pérez-Sánchez, Consuelo</au><au>Saraf, Anita</au><au>Florens, Laurence</au><au>Slaughter, Brian D.</au><au>Unruh, Jay R.</au><au>Si, Kausik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2015-12-03</date><risdate>2015</risdate><volume>163</volume><issue>6</issue><spage>1468</spage><epage>1483</epage><pages>1468-1483</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory. [Display omitted] •Drosophila Orb2 has two distinct physical states: monomer and amyloid-like oligomer•The monomeric Orb2 represses, whereas oligomeric Orb2 activates translation•The monomeric Orb2 removes, whereas oligomeric Orb2 protects/elongates poly(A) tail•Two proteins, CG13928 and CG4612, contribute to repression and activation, respectively The Orb2 protein switches from repressing to activating translation when it forms amyloid-like oligomers, suggesting a possible mechanism by which fleeting experiences create an enduring memory.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26638074</pmid><doi>10.1016/j.cell.2015.11.020</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2015-12, Vol.163 (6), p.1468-1483
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4674814
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3' Untranslated Regions
Amyloidogenic Proteins - chemistry
Amyloidogenic Proteins - metabolism
Animals
Drosophila
Drosophila melanogaster - metabolism
Drosophila Proteins - chemistry
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
memory
Memory, Long-Term
Mice
mRNA Cleavage and Polyadenylation Factors - chemistry
mRNA Cleavage and Polyadenylation Factors - metabolism
oligomerization
Polyadenylation
Protein Biosynthesis
Protein Structure, Tertiary
protein synthesis
RNA
RNA-Binding Proteins - metabolism
Serine Endopeptidases - genetics
Transcription Factors - chemistry
Transcription Factors - metabolism
translation (genetics)
title Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloidogenic%20Oligomerization%20Transforms%20Drosophila%20Orb2%20from%20a%20Translation%20Repressor%20to%20an%20Activator&rft.jtitle=Cell&rft.au=Khan,%20Mohammed%C2%A0Repon&rft.date=2015-12-03&rft.volume=163&rft.issue=6&rft.spage=1468&rft.epage=1483&rft.pages=1468-1483&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2015.11.020&rft_dat=%3Cproquest_pubme%3E1746871752%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746871752&rft_id=info:pmid/26638074&rft_els_id=S0092867415015007&rfr_iscdi=true