Tracing the fate of carbon and the atmospheric evolution of Mars

The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-11, Vol.6 (1), p.10003-10003, Article 10003
Hauptverfasser: Hu, Renyu, Kass, David M., Ehlmann, Bethany L., Yung, Yuk L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10003
container_issue 1
container_start_page 10003
container_title Nature communications
container_volume 6
creator Hu, Renyu
Kass, David M.
Ehlmann, Bethany L.
Yung, Yuk L.
description The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon ( 13 C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13 C/ 12 C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure
doi_str_mv 10.1038/ncomms10003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4673500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3875027271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-c93d403e6a841df067795de42db5771c896f760eafa6f194f4f3496075934bd23</originalsourceid><addsrcrecordid>eNptkc1LAzEQxYMottSevMuCF0GrySabbC6iFL-g4qWeQ5pN2i27SU12C_73Zm0tVTxNJu_HmxkeAKcIXiOI8xurXF0HBCHEB6CfQoJGiKX4cO_dA8MQlrBDOMoJOQa9lNLYMtYHd1MvVWnnSbPQiZGNTpxJlPQzZxNpi-9v2dQurBbalyrRa1e1TRnVyL1KH07AkZFV0MNtHYD3x4fp-Hk0eXt6Gd9PRipDaTNSHBcEYk1lTlBhIGWMZ4UmaTHLGEMq59QwCrU0khrEiSEGE04hyzgmsyLFA3C78V21s1oXStvGy0qsfFlL_ymcLMVvxZYLMXdrQSjDWbx9AC62Bt59tDo0oi6D0lUlrXZtEIhhShlP0zyi53_QpWu9jed1VMYyzElHXW4o5V0IXpvdMgiKLhyxF06kz_b337E_UUTgagOEKNm59ntD__H7ArNEmQ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735753948</pqid></control><display><type>article</type><title>Tracing the fate of carbon and the atmospheric evolution of Mars</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hu, Renyu ; Kass, David M. ; Ehlmann, Bethany L. ; Yung, Yuk L.</creator><creatorcontrib>Hu, Renyu ; Kass, David M. ; Ehlmann, Bethany L. ; Yung, Yuk L.</creatorcontrib><description>The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon ( 13 C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13 C/ 12 C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure &lt;1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time. Mars likely evolved from a warmer, wetter early state to the cold, arid current climate, but this evolution is not reflected in recent observations and measurements. Here, the authors derive quantitative constraints on the atmospheric pressure through time, identifying a mechanism that explains the carbon data.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10003</identifier><identifier>PMID: 26600077</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/213 ; 704/2151/2809 ; 704/445/824 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-11, Vol.6 (1), p.10003-10003, Article 10003</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Nov 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-c93d403e6a841df067795de42db5771c896f760eafa6f194f4f3496075934bd23</citedby><cites>FETCH-LOGICAL-c512t-c93d403e6a841df067795de42db5771c896f760eafa6f194f4f3496075934bd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673500/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673500/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26600077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Renyu</creatorcontrib><creatorcontrib>Kass, David M.</creatorcontrib><creatorcontrib>Ehlmann, Bethany L.</creatorcontrib><creatorcontrib>Yung, Yuk L.</creatorcontrib><title>Tracing the fate of carbon and the atmospheric evolution of Mars</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon ( 13 C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13 C/ 12 C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure &lt;1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time. Mars likely evolved from a warmer, wetter early state to the cold, arid current climate, but this evolution is not reflected in recent observations and measurements. Here, the authors derive quantitative constraints on the atmospheric pressure through time, identifying a mechanism that explains the carbon data.</description><subject>704/2151/213</subject><subject>704/2151/2809</subject><subject>704/445/824</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1LAzEQxYMottSevMuCF0GrySabbC6iFL-g4qWeQ5pN2i27SU12C_73Zm0tVTxNJu_HmxkeAKcIXiOI8xurXF0HBCHEB6CfQoJGiKX4cO_dA8MQlrBDOMoJOQa9lNLYMtYHd1MvVWnnSbPQiZGNTpxJlPQzZxNpi-9v2dQurBbalyrRa1e1TRnVyL1KH07AkZFV0MNtHYD3x4fp-Hk0eXt6Gd9PRipDaTNSHBcEYk1lTlBhIGWMZ4UmaTHLGEMq59QwCrU0khrEiSEGE04hyzgmsyLFA3C78V21s1oXStvGy0qsfFlL_ymcLMVvxZYLMXdrQSjDWbx9AC62Bt59tDo0oi6D0lUlrXZtEIhhShlP0zyi53_QpWu9jed1VMYyzElHXW4o5V0IXpvdMgiKLhyxF06kz_b337E_UUTgagOEKNm59ntD__H7ArNEmQ8</recordid><startdate>20151124</startdate><enddate>20151124</enddate><creator>Hu, Renyu</creator><creator>Kass, David M.</creator><creator>Ehlmann, Bethany L.</creator><creator>Yung, Yuk L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151124</creationdate><title>Tracing the fate of carbon and the atmospheric evolution of Mars</title><author>Hu, Renyu ; Kass, David M. ; Ehlmann, Bethany L. ; Yung, Yuk L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-c93d403e6a841df067795de42db5771c896f760eafa6f194f4f3496075934bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>704/2151/213</topic><topic>704/2151/2809</topic><topic>704/445/824</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Renyu</creatorcontrib><creatorcontrib>Kass, David M.</creatorcontrib><creatorcontrib>Ehlmann, Bethany L.</creatorcontrib><creatorcontrib>Yung, Yuk L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Renyu</au><au>Kass, David M.</au><au>Ehlmann, Bethany L.</au><au>Yung, Yuk L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing the fate of carbon and the atmospheric evolution of Mars</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-11-24</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>10003</spage><epage>10003</epage><pages>10003-10003</pages><artnum>10003</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon ( 13 C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13 C/ 12 C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure &lt;1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time. Mars likely evolved from a warmer, wetter early state to the cold, arid current climate, but this evolution is not reflected in recent observations and measurements. Here, the authors derive quantitative constraints on the atmospheric pressure through time, identifying a mechanism that explains the carbon data.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26600077</pmid><doi>10.1038/ncomms10003</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-11, Vol.6 (1), p.10003-10003, Article 10003
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4673500
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 704/2151/213
704/2151/2809
704/445/824
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Tracing the fate of carbon and the atmospheric evolution of Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20the%20fate%20of%20carbon%20and%20the%20atmospheric%20evolution%20of%20Mars&rft.jtitle=Nature%20communications&rft.au=Hu,%20Renyu&rft.date=2015-11-24&rft.volume=6&rft.issue=1&rft.spage=10003&rft.epage=10003&rft.pages=10003-10003&rft.artnum=10003&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10003&rft_dat=%3Cproquest_pubme%3E3875027271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735753948&rft_id=info:pmid/26600077&rfr_iscdi=true