The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials

The conventional CaCl2–H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2–H2O phase diagram. This study shows that the C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement & concrete composites 2015-11, Vol.64, p.1-15
Hauptverfasser: Farnam, Yaghoob, Dick, Sarah, Wiese, Andrew, Davis, Jeffrey, Bentz, Dale, Weiss, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title Cement & concrete composites
container_volume 64
creator Farnam, Yaghoob
Dick, Sarah
Wiese, Andrew
Davis, Jeffrey
Bentz, Dale
Weiss, Jason
description The conventional CaCl2–H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2–H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2–CaCl2–H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3% (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).
doi_str_mv 10.1016/j.cemconcomp.2015.09.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4672374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958946515300251</els_id><sourcerecordid>1826646446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-658d33003dd4b26d750c5c11798be551deac96b29a48d9c7dd0ed160d8d71c3b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERZfCV0A-ckmwE9uJL0hQlT9SpV5aqTfLGc_uepXYwU5W4tvj1ZYCJ05jaX7z5nkeIZSzmjOuPhxqwAligDjNdcO4rJmuGVMvyIb3XVu1un18STZMy77SQslL8jrnAyuE6JpX5LJRSjdKyg2Z7_dIfdiOKwZAGrcU7Ah-nSjsx5i8Q-rQgw87mu240BjovLcZS9uGHWZqg6POTnZ3Ao84xnnCsBRJWiyWl198XDOd7ILJ2zG_IRfbUvDtU70iD19u7q-_Vbd3X79ff7qtQHR6qZTsXdsy1jonhka5TjKQwHmn-wGl5A4taDU02oreaeicY-i4Yq53HYd2aK_Ix7PuvA4TOihWkh3NnPxk008TrTf_doLfm108GqG6pu1EEXj_JJDijxXzYiafAcfRBiw_MrwvVxRKCFXQ_oxCijkn3D6v4cycAjMH8ycwcwrMMG1KHGX03d82nwd_J1SAz2cAy7GOHpPJ4E9ZOZ8QFuOi__-WXz7csB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826646446</pqid></control><display><type>article</type><title>The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Farnam, Yaghoob ; Dick, Sarah ; Wiese, Andrew ; Davis, Jeffrey ; Bentz, Dale ; Weiss, Jason</creator><creatorcontrib>Farnam, Yaghoob ; Dick, Sarah ; Wiese, Andrew ; Davis, Jeffrey ; Bentz, Dale ; Weiss, Jason</creatorcontrib><description>The conventional CaCl2–H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2–H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2–CaCl2–H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3% (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).</description><identifier>ISSN: 0958-9465</identifier><identifier>EISSN: 1873-393X</identifier><identifier>DOI: 10.1016/j.cemconcomp.2015.09.006</identifier><identifier>PMID: 26692655</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Calcium oxychloride ; Concrete ; Damage ; Deicing salt ; Freeze-thaw ; Phase change</subject><ispartof>Cement &amp; concrete composites, 2015-11, Vol.64, p.1-15</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-658d33003dd4b26d750c5c11798be551deac96b29a48d9c7dd0ed160d8d71c3b3</citedby><cites>FETCH-LOGICAL-c479t-658d33003dd4b26d750c5c11798be551deac96b29a48d9c7dd0ed160d8d71c3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cemconcomp.2015.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26692655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farnam, Yaghoob</creatorcontrib><creatorcontrib>Dick, Sarah</creatorcontrib><creatorcontrib>Wiese, Andrew</creatorcontrib><creatorcontrib>Davis, Jeffrey</creatorcontrib><creatorcontrib>Bentz, Dale</creatorcontrib><creatorcontrib>Weiss, Jason</creatorcontrib><title>The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials</title><title>Cement &amp; concrete composites</title><addtitle>Cem Concr Compos</addtitle><description>The conventional CaCl2–H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2–H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2–CaCl2–H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3% (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).</description><subject>Calcium oxychloride</subject><subject>Concrete</subject><subject>Damage</subject><subject>Deicing salt</subject><subject>Freeze-thaw</subject><subject>Phase change</subject><issn>0958-9465</issn><issn>1873-393X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS1ERZfCV0A-ckmwE9uJL0hQlT9SpV5aqTfLGc_uepXYwU5W4tvj1ZYCJ05jaX7z5nkeIZSzmjOuPhxqwAligDjNdcO4rJmuGVMvyIb3XVu1un18STZMy77SQslL8jrnAyuE6JpX5LJRSjdKyg2Z7_dIfdiOKwZAGrcU7Ah-nSjsx5i8Q-rQgw87mu240BjovLcZS9uGHWZqg6POTnZ3Ao84xnnCsBRJWiyWl198XDOd7ILJ2zG_IRfbUvDtU70iD19u7q-_Vbd3X79ff7qtQHR6qZTsXdsy1jonhka5TjKQwHmn-wGl5A4taDU02oreaeicY-i4Yq53HYd2aK_Ix7PuvA4TOihWkh3NnPxk008TrTf_doLfm108GqG6pu1EEXj_JJDijxXzYiafAcfRBiw_MrwvVxRKCFXQ_oxCijkn3D6v4cycAjMH8ycwcwrMMG1KHGX03d82nwd_J1SAz2cAy7GOHpPJ4E9ZOZ8QFuOi__-WXz7csB0</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Farnam, Yaghoob</creator><creator>Dick, Sarah</creator><creator>Wiese, Andrew</creator><creator>Davis, Jeffrey</creator><creator>Bentz, Dale</creator><creator>Weiss, Jason</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201511</creationdate><title>The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials</title><author>Farnam, Yaghoob ; Dick, Sarah ; Wiese, Andrew ; Davis, Jeffrey ; Bentz, Dale ; Weiss, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-658d33003dd4b26d750c5c11798be551deac96b29a48d9c7dd0ed160d8d71c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calcium oxychloride</topic><topic>Concrete</topic><topic>Damage</topic><topic>Deicing salt</topic><topic>Freeze-thaw</topic><topic>Phase change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farnam, Yaghoob</creatorcontrib><creatorcontrib>Dick, Sarah</creatorcontrib><creatorcontrib>Wiese, Andrew</creatorcontrib><creatorcontrib>Davis, Jeffrey</creatorcontrib><creatorcontrib>Bentz, Dale</creatorcontrib><creatorcontrib>Weiss, Jason</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cement &amp; concrete composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farnam, Yaghoob</au><au>Dick, Sarah</au><au>Wiese, Andrew</au><au>Davis, Jeffrey</au><au>Bentz, Dale</au><au>Weiss, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials</atitle><jtitle>Cement &amp; concrete composites</jtitle><addtitle>Cem Concr Compos</addtitle><date>2015-11</date><risdate>2015</risdate><volume>64</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0958-9465</issn><eissn>1873-393X</eissn><abstract>The conventional CaCl2–H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2–H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2–CaCl2–H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3% (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26692655</pmid><doi>10.1016/j.cemconcomp.2015.09.006</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-9465
ispartof Cement & concrete composites, 2015-11, Vol.64, p.1-15
issn 0958-9465
1873-393X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4672374
source Elsevier ScienceDirect Journals Complete
subjects Calcium oxychloride
Concrete
Damage
Deicing salt
Freeze-thaw
Phase change
title The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20calcium%20chloride%20deicing%20salt%20on%20phase%20changes%20and%20damage%20development%20in%20cementitious%20materials&rft.jtitle=Cement%20&%20concrete%20composites&rft.au=Farnam,%20Yaghoob&rft.date=2015-11&rft.volume=64&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0958-9465&rft.eissn=1873-393X&rft_id=info:doi/10.1016/j.cemconcomp.2015.09.006&rft_dat=%3Cproquest_pubme%3E1826646446%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826646446&rft_id=info:pmid/26692655&rft_els_id=S0958946515300251&rfr_iscdi=true