Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation

Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2015-02, Vol.6 (2), p.e1663-e1663
Hauptverfasser: Touvier, T, De Palma, C, Rigamonti, E, Scagliola, A, Incerti, E, Mazelin, L, Thomas, J-L, D'Antonio, M, Politi, L, Schaeffer, L, Clementi, E, Brunelli, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1663
container_issue 2
container_start_page e1663
container_title Cell death & disease
container_volume 6
creator Touvier, T
De Palma, C
Rigamonti, E
Scagliola, A
Incerti, E
Mazelin, L
Thomas, J-L
D'Antonio, M
Politi, L
Schaeffer, L
Clementi, E
Brunelli, S
description Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2 α /Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies.
doi_str_mv 10.1038/cddis.2014.595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4669802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669450729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-caf977a43aed321de8331f0fa5d224cc24f38e38361f82529f8d32ea5e73cb543</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERau2V44oEhcu2fpzY1-QUEsBqYgLnI3rjLcuSRw8ydL--3p3S7UgJHyxrXnmnY-XkJeMLhgV-sy3bcQFp0wulFHPyBGnktVSa_N8731IThFvaTlCUK6WL8ghVw0zXDZH5PvnGX0HNY7gY4i-usgjq9IaMtyNGRBjGqrYjy5mrPAHdDC5ruq3SdUqp1_TTbWOrpqyG7BzU8FL3E0TDPP2d0IOgusQTh_vY_Lt8v3X84_11ZcPn87fXdVeqWaqvQumaZwUDlrBWQtaCBZocKrlXHrPZRAahBZLFjRX3ARdOHAKGuGvlRTH5O1Od5yve2g9DKWlzo459i7f2-Si_TMyxBu7Smsrl0ujKS8Cbx4Fcvo5A062j-ih69wAaUbLGkONMqys8b9okZSKNtwU9PVf6G2ac9nRRlArw00ZplCLHeVzQswQnvpm1G6stlur7cZqW6wuCa_2p33CfxtbgLMdgCU0rCDv1f235ANMpbcT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785929252</pqid></control><display><type>article</type><title>Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Touvier, T ; De Palma, C ; Rigamonti, E ; Scagliola, A ; Incerti, E ; Mazelin, L ; Thomas, J-L ; D'Antonio, M ; Politi, L ; Schaeffer, L ; Clementi, E ; Brunelli, S</creator><creatorcontrib>Touvier, T ; De Palma, C ; Rigamonti, E ; Scagliola, A ; Incerti, E ; Mazelin, L ; Thomas, J-L ; D'Antonio, M ; Politi, L ; Schaeffer, L ; Clementi, E ; Brunelli, S</creatorcontrib><description>Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2 α /Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2014.595</identifier><identifier>PMID: 25719247</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/1 ; 14/35 ; 14/63 ; 631/337 ; 631/443/319/333 ; 631/80/86 ; 64/60 ; 692/699/1670/1669 ; 96/1 ; 96/106 ; 96/31 ; 96/63 ; 96/95 ; Animals ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Blotting, Western ; Cell Biology ; Cell Culture ; DNA, Mitochondrial - metabolism ; Dynamins - genetics ; Dynamins - metabolism ; Immunology ; Immunoprecipitation ; Life Sciences ; Membrane Potential, Mitochondrial - genetics ; Membrane Potential, Mitochondrial - physiology ; Mice ; Mice, Transgenic ; Muscle, Skeletal - metabolism ; Original ; original-article ; Oxygen Consumption - physiology</subject><ispartof>Cell death &amp; disease, 2015-02, Vol.6 (2), p.e1663-e1663</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><rights>Copyright © 2015 Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-caf977a43aed321de8331f0fa5d224cc24f38e38361f82529f8d32ea5e73cb543</citedby><cites>FETCH-LOGICAL-c557t-caf977a43aed321de8331f0fa5d224cc24f38e38361f82529f8d32ea5e73cb543</cites><orcidid>0000-0003-1753-5346 ; 0000000317535346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669802/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669802/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25719247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Touvier, T</creatorcontrib><creatorcontrib>De Palma, C</creatorcontrib><creatorcontrib>Rigamonti, E</creatorcontrib><creatorcontrib>Scagliola, A</creatorcontrib><creatorcontrib>Incerti, E</creatorcontrib><creatorcontrib>Mazelin, L</creatorcontrib><creatorcontrib>Thomas, J-L</creatorcontrib><creatorcontrib>D'Antonio, M</creatorcontrib><creatorcontrib>Politi, L</creatorcontrib><creatorcontrib>Schaeffer, L</creatorcontrib><creatorcontrib>Clementi, E</creatorcontrib><creatorcontrib>Brunelli, S</creatorcontrib><title>Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2 α /Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies.</description><subject>13/1</subject><subject>14/1</subject><subject>14/35</subject><subject>14/63</subject><subject>631/337</subject><subject>631/443/319/333</subject><subject>631/80/86</subject><subject>64/60</subject><subject>692/699/1670/1669</subject><subject>96/1</subject><subject>96/106</subject><subject>96/31</subject><subject>96/63</subject><subject>96/95</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Blotting, Western</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Immunology</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Oxygen Consumption - physiology</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhi1ERau2V44oEhcu2fpzY1-QUEsBqYgLnI3rjLcuSRw8ydL--3p3S7UgJHyxrXnmnY-XkJeMLhgV-sy3bcQFp0wulFHPyBGnktVSa_N8731IThFvaTlCUK6WL8ghVw0zXDZH5PvnGX0HNY7gY4i-usgjq9IaMtyNGRBjGqrYjy5mrPAHdDC5ruq3SdUqp1_TTbWOrpqyG7BzU8FL3E0TDPP2d0IOgusQTh_vY_Lt8v3X84_11ZcPn87fXdVeqWaqvQumaZwUDlrBWQtaCBZocKrlXHrPZRAahBZLFjRX3ARdOHAKGuGvlRTH5O1Od5yve2g9DKWlzo459i7f2-Si_TMyxBu7Smsrl0ujKS8Cbx4Fcvo5A062j-ih69wAaUbLGkONMqys8b9okZSKNtwU9PVf6G2ac9nRRlArw00ZplCLHeVzQswQnvpm1G6stlur7cZqW6wuCa_2p33CfxtbgLMdgCU0rCDv1f235ANMpbcT</recordid><startdate>20150226</startdate><enddate>20150226</enddate><creator>Touvier, T</creator><creator>De Palma, C</creator><creator>Rigamonti, E</creator><creator>Scagliola, A</creator><creator>Incerti, E</creator><creator>Mazelin, L</creator><creator>Thomas, J-L</creator><creator>D'Antonio, M</creator><creator>Politi, L</creator><creator>Schaeffer, L</creator><creator>Clementi, E</creator><creator>Brunelli, S</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TO</scope><scope>H94</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1753-5346</orcidid><orcidid>https://orcid.org/0000000317535346</orcidid></search><sort><creationdate>20150226</creationdate><title>Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation</title><author>Touvier, T ; De Palma, C ; Rigamonti, E ; Scagliola, A ; Incerti, E ; Mazelin, L ; Thomas, J-L ; D'Antonio, M ; Politi, L ; Schaeffer, L ; Clementi, E ; Brunelli, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-caf977a43aed321de8331f0fa5d224cc24f38e38361f82529f8d32ea5e73cb543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>14/1</topic><topic>14/35</topic><topic>14/63</topic><topic>631/337</topic><topic>631/443/319/333</topic><topic>631/80/86</topic><topic>64/60</topic><topic>692/699/1670/1669</topic><topic>96/1</topic><topic>96/106</topic><topic>96/31</topic><topic>96/63</topic><topic>96/95</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Blotting, Western</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Immunology</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Oxygen Consumption - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touvier, T</creatorcontrib><creatorcontrib>De Palma, C</creatorcontrib><creatorcontrib>Rigamonti, E</creatorcontrib><creatorcontrib>Scagliola, A</creatorcontrib><creatorcontrib>Incerti, E</creatorcontrib><creatorcontrib>Mazelin, L</creatorcontrib><creatorcontrib>Thomas, J-L</creatorcontrib><creatorcontrib>D'Antonio, M</creatorcontrib><creatorcontrib>Politi, L</creatorcontrib><creatorcontrib>Schaeffer, L</creatorcontrib><creatorcontrib>Clementi, E</creatorcontrib><creatorcontrib>Brunelli, S</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touvier, T</au><au>De Palma, C</au><au>Rigamonti, E</au><au>Scagliola, A</au><au>Incerti, E</au><au>Mazelin, L</au><au>Thomas, J-L</au><au>D'Antonio, M</au><au>Politi, L</au><au>Schaeffer, L</au><au>Clementi, E</au><au>Brunelli, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2015-02-26</date><risdate>2015</risdate><volume>6</volume><issue>2</issue><spage>e1663</spage><epage>e1663</epage><pages>e1663-e1663</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2 α /Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25719247</pmid><doi>10.1038/cddis.2014.595</doi><orcidid>https://orcid.org/0000-0003-1753-5346</orcidid><orcidid>https://orcid.org/0000000317535346</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2015-02, Vol.6 (2), p.e1663-e1663
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4669802
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 13/1
14/1
14/35
14/63
631/337
631/443/319/333
631/80/86
64/60
692/699/1670/1669
96/1
96/106
96/31
96/63
96/95
Animals
Antibodies
Biochemistry
Biomedical and Life Sciences
Blotting, Western
Cell Biology
Cell Culture
DNA, Mitochondrial - metabolism
Dynamins - genetics
Dynamins - metabolism
Immunology
Immunoprecipitation
Life Sciences
Membrane Potential, Mitochondrial - genetics
Membrane Potential, Mitochondrial - physiology
Mice
Mice, Transgenic
Muscle, Skeletal - metabolism
Original
original-article
Oxygen Consumption - physiology
title Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle-specific%20Drp1%20overexpression%20impairs%20skeletal%20muscle%20growth%20via%20translational%20attenuation&rft.jtitle=Cell%20death%20&%20disease&rft.au=Touvier,%20T&rft.date=2015-02-26&rft.volume=6&rft.issue=2&rft.spage=e1663&rft.epage=e1663&rft.pages=e1663-e1663&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2014.595&rft_dat=%3Cproquest_pubme%3E1669450729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785929252&rft_id=info:pmid/25719247&rfr_iscdi=true