Quantifying randomness in real networks
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other r...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-10, Vol.6 (1), p.8627-8627, Article 8627 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8627 |
---|---|
container_issue | 1 |
container_start_page | 8627 |
container_title | Nature communications |
container_volume | 6 |
creator | Orsini, Chiara Dankulov, Marija M. Colomer-de-Simón, Pol Jamakovic, Almerima Mahadevan, Priya Vahdat, Amin Bassler, Kevin E. Toroczkai, Zoltán Boguñá, Marián Caldarelli, Guido Fortunato, Santo Krioukov, Dmitri |
description | Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the
dk
-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks—the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain—and find that many important local and global structural properties of these networks are closely reproduced by
dk
-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate
dk
-random graphs.
Many complex properties of real networks appear as consequences of a small set of their basic properties. Here, the authors show that
dk
-random graphs that reproduce degree distributions, degree correlations, and clustering in real networks, reproduce a variety of their other properties as well. |
doi_str_mv | 10.1038/ncomms9627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4667701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1725024443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-e3e0bbe2d4a1f58a15a75cec1b35a82fb005952dac1a2efffb94ff43fd4eb3893</originalsourceid><addsrcrecordid>eNplkdtKw0AQhhdRbKm98QGk4IWiRPeYw40gxRMURNDrZZPM1tRkt-4mSt_eLa216tzMwHz8888MQocEXxDM0ktT2KbxWUyTHdSnmJOIJJTtbtU9NPR-hkOwjKSc76MejXlKCSV9dPLUKdNWelGZ6cgpU9rGgPejyowcqHpkoP207s0foD2tag_DdR6gl9ub5_F9NHm8exhfT6JC4LSNgAHOc6AlV0SLVBGhElFAQXImVEp1jrHIBC1VQRQFrXWeca050yWHnKUZG6Crle68yxsoCzCtU7Wcu6pRbiGtquTvjqle5dR-SB7HSYJJEDhdCzj73oFvZVP5AupaGbCdl-EiAlPOOQvo8R90ZjtnwnpLiiWCxnEaqLMVVTjrvQO9MUOwXL5A_rwgwEfb9jfo98EDcL4CfGiZKbitmf_lvgAOkZIb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1723752668</pqid></control><display><type>article</type><title>Quantifying randomness in real networks</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Open Access: Nature Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Orsini, Chiara ; Dankulov, Marija M. ; Colomer-de-Simón, Pol ; Jamakovic, Almerima ; Mahadevan, Priya ; Vahdat, Amin ; Bassler, Kevin E. ; Toroczkai, Zoltán ; Boguñá, Marián ; Caldarelli, Guido ; Fortunato, Santo ; Krioukov, Dmitri</creator><creatorcontrib>Orsini, Chiara ; Dankulov, Marija M. ; Colomer-de-Simón, Pol ; Jamakovic, Almerima ; Mahadevan, Priya ; Vahdat, Amin ; Bassler, Kevin E. ; Toroczkai, Zoltán ; Boguñá, Marián ; Caldarelli, Guido ; Fortunato, Santo ; Krioukov, Dmitri</creatorcontrib><description>Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the
dk
-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks—the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain—and find that many important local and global structural properties of these networks are closely reproduced by
dk
-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate
dk
-random graphs.
Many complex properties of real networks appear as consequences of a small set of their basic properties. Here, the authors show that
dk
-random graphs that reproduce degree distributions, degree correlations, and clustering in real networks, reproduce a variety of their other properties as well.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9627</identifier><identifier>PMID: 26482121</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/640 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-10, Vol.6 (1), p.8627-8627, Article 8627</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-e3e0bbe2d4a1f58a15a75cec1b35a82fb005952dac1a2efffb94ff43fd4eb3893</citedby><cites>FETCH-LOGICAL-c508t-e3e0bbe2d4a1f58a15a75cec1b35a82fb005952dac1a2efffb94ff43fd4eb3893</cites><orcidid>0000-0001-9478-8182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667701/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667701/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26482121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orsini, Chiara</creatorcontrib><creatorcontrib>Dankulov, Marija M.</creatorcontrib><creatorcontrib>Colomer-de-Simón, Pol</creatorcontrib><creatorcontrib>Jamakovic, Almerima</creatorcontrib><creatorcontrib>Mahadevan, Priya</creatorcontrib><creatorcontrib>Vahdat, Amin</creatorcontrib><creatorcontrib>Bassler, Kevin E.</creatorcontrib><creatorcontrib>Toroczkai, Zoltán</creatorcontrib><creatorcontrib>Boguñá, Marián</creatorcontrib><creatorcontrib>Caldarelli, Guido</creatorcontrib><creatorcontrib>Fortunato, Santo</creatorcontrib><creatorcontrib>Krioukov, Dmitri</creatorcontrib><title>Quantifying randomness in real networks</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the
dk
-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks—the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain—and find that many important local and global structural properties of these networks are closely reproduced by
dk
-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate
dk
-random graphs.
Many complex properties of real networks appear as consequences of a small set of their basic properties. Here, the authors show that
dk
-random graphs that reproduce degree distributions, degree correlations, and clustering in real networks, reproduce a variety of their other properties as well.</description><subject>639/766/483/640</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkdtKw0AQhhdRbKm98QGk4IWiRPeYw40gxRMURNDrZZPM1tRkt-4mSt_eLa216tzMwHz8888MQocEXxDM0ktT2KbxWUyTHdSnmJOIJJTtbtU9NPR-hkOwjKSc76MejXlKCSV9dPLUKdNWelGZ6cgpU9rGgPejyowcqHpkoP207s0foD2tag_DdR6gl9ub5_F9NHm8exhfT6JC4LSNgAHOc6AlV0SLVBGhElFAQXImVEp1jrHIBC1VQRQFrXWeca050yWHnKUZG6Crle68yxsoCzCtU7Wcu6pRbiGtquTvjqle5dR-SB7HSYJJEDhdCzj73oFvZVP5AupaGbCdl-EiAlPOOQvo8R90ZjtnwnpLiiWCxnEaqLMVVTjrvQO9MUOwXL5A_rwgwEfb9jfo98EDcL4CfGiZKbitmf_lvgAOkZIb</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Orsini, Chiara</creator><creator>Dankulov, Marija M.</creator><creator>Colomer-de-Simón, Pol</creator><creator>Jamakovic, Almerima</creator><creator>Mahadevan, Priya</creator><creator>Vahdat, Amin</creator><creator>Bassler, Kevin E.</creator><creator>Toroczkai, Zoltán</creator><creator>Boguñá, Marián</creator><creator>Caldarelli, Guido</creator><creator>Fortunato, Santo</creator><creator>Krioukov, Dmitri</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9478-8182</orcidid></search><sort><creationdate>20151020</creationdate><title>Quantifying randomness in real networks</title><author>Orsini, Chiara ; Dankulov, Marija M. ; Colomer-de-Simón, Pol ; Jamakovic, Almerima ; Mahadevan, Priya ; Vahdat, Amin ; Bassler, Kevin E. ; Toroczkai, Zoltán ; Boguñá, Marián ; Caldarelli, Guido ; Fortunato, Santo ; Krioukov, Dmitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-e3e0bbe2d4a1f58a15a75cec1b35a82fb005952dac1a2efffb94ff43fd4eb3893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/483/640</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsini, Chiara</creatorcontrib><creatorcontrib>Dankulov, Marija M.</creatorcontrib><creatorcontrib>Colomer-de-Simón, Pol</creatorcontrib><creatorcontrib>Jamakovic, Almerima</creatorcontrib><creatorcontrib>Mahadevan, Priya</creatorcontrib><creatorcontrib>Vahdat, Amin</creatorcontrib><creatorcontrib>Bassler, Kevin E.</creatorcontrib><creatorcontrib>Toroczkai, Zoltán</creatorcontrib><creatorcontrib>Boguñá, Marián</creatorcontrib><creatorcontrib>Caldarelli, Guido</creatorcontrib><creatorcontrib>Fortunato, Santo</creatorcontrib><creatorcontrib>Krioukov, Dmitri</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orsini, Chiara</au><au>Dankulov, Marija M.</au><au>Colomer-de-Simón, Pol</au><au>Jamakovic, Almerima</au><au>Mahadevan, Priya</au><au>Vahdat, Amin</au><au>Bassler, Kevin E.</au><au>Toroczkai, Zoltán</au><au>Boguñá, Marián</au><au>Caldarelli, Guido</au><au>Fortunato, Santo</au><au>Krioukov, Dmitri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying randomness in real networks</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8627</spage><epage>8627</epage><pages>8627-8627</pages><artnum>8627</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the
dk
-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks—the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain—and find that many important local and global structural properties of these networks are closely reproduced by
dk
-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate
dk
-random graphs.
Many complex properties of real networks appear as consequences of a small set of their basic properties. Here, the authors show that
dk
-random graphs that reproduce degree distributions, degree correlations, and clustering in real networks, reproduce a variety of their other properties as well.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26482121</pmid><doi>10.1038/ncomms9627</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9478-8182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-10, Vol.6 (1), p.8627-8627, Article 8627 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4667701 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Open Access: Nature Open Access; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | 639/766/483/640 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Quantifying randomness in real networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20randomness%20in%20real%20networks&rft.jtitle=Nature%20communications&rft.au=Orsini,%20Chiara&rft.date=2015-10-20&rft.volume=6&rft.issue=1&rft.spage=8627&rft.epage=8627&rft.pages=8627-8627&rft.artnum=8627&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9627&rft_dat=%3Cproquest_pubme%3E1725024443%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1723752668&rft_id=info:pmid/26482121&rfr_iscdi=true |