Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity
Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses a...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-11, Vol.290 (48), p.29063-29073 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29073 |
---|---|
container_issue | 48 |
container_start_page | 29063 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Wood, Stephen J. Goldufsky, Josef W. Bello, Daniella Masood, Sara Shafikhani, Sasha H. |
description | Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells.
Background: The GAP domain of ExoT induces apoptosis in epithelial cells, but the mechanism underlying GAP-induced apoptosis remains unknown.
Results: GAP domain activates JNK1/2, causes cytochrome c release, and activates caspase-9 and caspase-3.
Conclusion: GAP domain of ExoT induces intrinsic apoptosis in epithelial cells.
Significance: The GAP and the ADPRT domains make ExoT into a potent cytotoxin, capable of inducing different forms of apoptosis. |
doi_str_mv | 10.1074/jbc.M115.689950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4661418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582041230X</els_id><sourcerecordid>1737480421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4a7d0642b18f37ac475a5ff453243f384ae8ab7c65a4656957a2bacec64fcc0f3</originalsourceid><addsrcrecordid>eNp1kU9vEzEQxVcIREPhzA35WA6b2rv2_rkgRWlJIzUih0XiZs16ZxNXu3awvRH9NnxUHFIqOODLyJ43z6P3S5L3jM4ZLfn1Q6vmG8bEvKjqWtAXyYzRKk9zwb69TGaUZiytM1FdJG-8f6Dx8Jq9Ti6yggtGeTZLfm49Tp0drQFPAN2008Z6ILc_bEPWppsUerLRwaq9NZ3TMJDFwR6C9doTbUgDboeB3FkfyBKH4fcjkA0Yg440ewjkBg9oOk-sIevgyarZgscUVNBHCNrsyNbZgHHsarXYfiQ3doR4WZz6Ojy-TV71MHh891Qvk6-fb5vlXXr_ZbVeLu5TxXkeUg5lRwuetazq8xIULwWIvuciz3je5xUHrKAtVSGAF6KoRQlZCwpVwXulaJ9fJp_OvoepHbFTaIKDQR6cHsE9Sgta_tsxei939ih5UTDOqmhw9WTg7PcJfZCj9ipGAgbt5CUr85JXMXQWpddnqXLWe4f98zeMyhNXGbnKE1d55honPvy93bP-D8goqM8CjBkdNTrplUajsNMOVZCd1f81_wVjsrUC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737480421</pqid></control><display><type>article</type><title>Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wood, Stephen J. ; Goldufsky, Josef W. ; Bello, Daniella ; Masood, Sara ; Shafikhani, Sasha H.</creator><creatorcontrib>Wood, Stephen J. ; Goldufsky, Josef W. ; Bello, Daniella ; Masood, Sara ; Shafikhani, Sasha H.</creatorcontrib><description>Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells.
Background: The GAP domain of ExoT induces apoptosis in epithelial cells, but the mechanism underlying GAP-induced apoptosis remains unknown.
Results: GAP domain activates JNK1/2, causes cytochrome c release, and activates caspase-9 and caspase-3.
Conclusion: GAP domain of ExoT induces intrinsic apoptosis in epithelial cells.
Significance: The GAP and the ADPRT domains make ExoT into a potent cytotoxin, capable of inducing different forms of apoptosis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.689950</identifier><identifier>PMID: 26451042</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ADP Ribose Transferases ; Apoptosis ; Apoptosis Regulatory Proteins - genetics ; Apoptosis Regulatory Proteins - metabolism ; bacterial toxin ; Bax ; BCL-2 ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - metabolism ; Bcl-2-Like Protein 11 ; BH3 Interacting Domain Death Agonist Protein ; Bid ; Bim ; c-Jun ; c-Jun N-terminal kinase (JNK) ; c-Jun transcription factor ; Caspase 9 - genetics ; Caspase 9 - metabolism ; cytochrome c ; Enzyme Activation - genetics ; ExoT ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; HeLa Cells ; Humans ; JNK ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microbiology ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitogen-Activated Protein Kinase 8 - genetics ; Mitogen-Activated Protein Kinase 8 - metabolism ; Mitogen-Activated Protein Kinase 9 - genetics ; Mitogen-Activated Protein Kinase 9 - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Pseudomonas aeruginosa (P. aeruginosa) ; Pseudomonas aeruginosa - enzymology ; Pseudomonas aeruginosa - pathogenicity ; Pseudomonas Infections - enzymology ; Pseudomonas Infections - genetics ; Pseudomonas Infections - pathology</subject><ispartof>The Journal of biological chemistry, 2015-11, Vol.290 (48), p.29063-29073</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4a7d0642b18f37ac475a5ff453243f384ae8ab7c65a4656957a2bacec64fcc0f3</citedby><cites>FETCH-LOGICAL-c443t-4a7d0642b18f37ac475a5ff453243f384ae8ab7c65a4656957a2bacec64fcc0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661418/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661418/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26451042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, Stephen J.</creatorcontrib><creatorcontrib>Goldufsky, Josef W.</creatorcontrib><creatorcontrib>Bello, Daniella</creatorcontrib><creatorcontrib>Masood, Sara</creatorcontrib><creatorcontrib>Shafikhani, Sasha H.</creatorcontrib><title>Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells.
Background: The GAP domain of ExoT induces apoptosis in epithelial cells, but the mechanism underlying GAP-induced apoptosis remains unknown.
Results: GAP domain activates JNK1/2, causes cytochrome c release, and activates caspase-9 and caspase-3.
Conclusion: GAP domain of ExoT induces intrinsic apoptosis in epithelial cells.
Significance: The GAP and the ADPRT domains make ExoT into a potent cytotoxin, capable of inducing different forms of apoptosis.</description><subject>ADP Ribose Transferases</subject><subject>Apoptosis</subject><subject>Apoptosis Regulatory Proteins - genetics</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>bacterial toxin</subject><subject>Bax</subject><subject>BCL-2</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Bcl-2-Like Protein 11</subject><subject>BH3 Interacting Domain Death Agonist Protein</subject><subject>Bid</subject><subject>Bim</subject><subject>c-Jun</subject><subject>c-Jun N-terminal kinase (JNK)</subject><subject>c-Jun transcription factor</subject><subject>Caspase 9 - genetics</subject><subject>Caspase 9 - metabolism</subject><subject>cytochrome c</subject><subject>Enzyme Activation - genetics</subject><subject>ExoT</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>JNK</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microbiology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitogen-Activated Protein Kinase 8 - genetics</subject><subject>Mitogen-Activated Protein Kinase 8 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 9 - genetics</subject><subject>Mitogen-Activated Protein Kinase 9 - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Pseudomonas aeruginosa (P. aeruginosa)</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Pseudomonas aeruginosa - pathogenicity</subject><subject>Pseudomonas Infections - enzymology</subject><subject>Pseudomonas Infections - genetics</subject><subject>Pseudomonas Infections - pathology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9vEzEQxVcIREPhzA35WA6b2rv2_rkgRWlJIzUih0XiZs16ZxNXu3awvRH9NnxUHFIqOODLyJ43z6P3S5L3jM4ZLfn1Q6vmG8bEvKjqWtAXyYzRKk9zwb69TGaUZiytM1FdJG-8f6Dx8Jq9Ti6yggtGeTZLfm49Tp0drQFPAN2008Z6ILc_bEPWppsUerLRwaq9NZ3TMJDFwR6C9doTbUgDboeB3FkfyBKH4fcjkA0Yg440ewjkBg9oOk-sIevgyarZgscUVNBHCNrsyNbZgHHsarXYfiQ3doR4WZz6Ojy-TV71MHh891Qvk6-fb5vlXXr_ZbVeLu5TxXkeUg5lRwuetazq8xIULwWIvuciz3je5xUHrKAtVSGAF6KoRQlZCwpVwXulaJ9fJp_OvoepHbFTaIKDQR6cHsE9Sgta_tsxei939ih5UTDOqmhw9WTg7PcJfZCj9ipGAgbt5CUr85JXMXQWpddnqXLWe4f98zeMyhNXGbnKE1d55honPvy93bP-D8goqM8CjBkdNTrplUajsNMOVZCd1f81_wVjsrUC</recordid><startdate>20151127</startdate><enddate>20151127</enddate><creator>Wood, Stephen J.</creator><creator>Goldufsky, Josef W.</creator><creator>Bello, Daniella</creator><creator>Masood, Sara</creator><creator>Shafikhani, Sasha H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151127</creationdate><title>Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity</title><author>Wood, Stephen J. ; Goldufsky, Josef W. ; Bello, Daniella ; Masood, Sara ; Shafikhani, Sasha H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4a7d0642b18f37ac475a5ff453243f384ae8ab7c65a4656957a2bacec64fcc0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ADP Ribose Transferases</topic><topic>Apoptosis</topic><topic>Apoptosis Regulatory Proteins - genetics</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>bacterial toxin</topic><topic>Bax</topic><topic>BCL-2</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Bcl-2-Like Protein 11</topic><topic>BH3 Interacting Domain Death Agonist Protein</topic><topic>Bid</topic><topic>Bim</topic><topic>c-Jun</topic><topic>c-Jun N-terminal kinase (JNK)</topic><topic>c-Jun transcription factor</topic><topic>Caspase 9 - genetics</topic><topic>Caspase 9 - metabolism</topic><topic>cytochrome c</topic><topic>Enzyme Activation - genetics</topic><topic>ExoT</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>JNK</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microbiology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitogen-Activated Protein Kinase 8 - genetics</topic><topic>Mitogen-Activated Protein Kinase 8 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 9 - genetics</topic><topic>Mitogen-Activated Protein Kinase 9 - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Pseudomonas aeruginosa (P. aeruginosa)</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Pseudomonas aeruginosa - pathogenicity</topic><topic>Pseudomonas Infections - enzymology</topic><topic>Pseudomonas Infections - genetics</topic><topic>Pseudomonas Infections - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Stephen J.</creatorcontrib><creatorcontrib>Goldufsky, Josef W.</creatorcontrib><creatorcontrib>Bello, Daniella</creatorcontrib><creatorcontrib>Masood, Sara</creatorcontrib><creatorcontrib>Shafikhani, Sasha H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Stephen J.</au><au>Goldufsky, Josef W.</au><au>Bello, Daniella</au><au>Masood, Sara</au><au>Shafikhani, Sasha H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-11-27</date><risdate>2015</risdate><volume>290</volume><issue>48</issue><spage>29063</spage><epage>29073</epage><pages>29063-29073</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells.
Background: The GAP domain of ExoT induces apoptosis in epithelial cells, but the mechanism underlying GAP-induced apoptosis remains unknown.
Results: GAP domain activates JNK1/2, causes cytochrome c release, and activates caspase-9 and caspase-3.
Conclusion: GAP domain of ExoT induces intrinsic apoptosis in epithelial cells.
Significance: The GAP and the ADPRT domains make ExoT into a potent cytotoxin, capable of inducing different forms of apoptosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26451042</pmid><doi>10.1074/jbc.M115.689950</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-11, Vol.290 (48), p.29063-29073 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4661418 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | ADP Ribose Transferases Apoptosis Apoptosis Regulatory Proteins - genetics Apoptosis Regulatory Proteins - metabolism bacterial toxin Bax BCL-2 bcl-2-Associated X Protein - genetics bcl-2-Associated X Protein - metabolism Bcl-2-Like Protein 11 BH3 Interacting Domain Death Agonist Protein Bid Bim c-Jun c-Jun N-terminal kinase (JNK) c-Jun transcription factor Caspase 9 - genetics Caspase 9 - metabolism cytochrome c Enzyme Activation - genetics ExoT GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism HeLa Cells Humans JNK Membrane Proteins - genetics Membrane Proteins - metabolism Microbiology Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Mitogen-Activated Protein Kinase 8 - genetics Mitogen-Activated Protein Kinase 8 - metabolism Mitogen-Activated Protein Kinase 9 - genetics Mitogen-Activated Protein Kinase 9 - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Pseudomonas aeruginosa (P. aeruginosa) Pseudomonas aeruginosa - enzymology Pseudomonas aeruginosa - pathogenicity Pseudomonas Infections - enzymology Pseudomonas Infections - genetics Pseudomonas Infections - pathology |
title | Pseudomonas aeruginosa ExoT Induces Mitochondrial Apoptosis in Target Host Cells in a Manner That Depends on Its GTPase-activating Protein (GAP) Domain Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudomonas%20aeruginosa%20ExoT%20Induces%20Mitochondrial%20Apoptosis%20in%20Target%20Host%20Cells%20in%20a%20Manner%20That%20Depends%20on%20Its%20GTPase-activating%20Protein%20(GAP)%20Domain%20Activity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wood,%20Stephen%20J.&rft.date=2015-11-27&rft.volume=290&rft.issue=48&rft.spage=29063&rft.epage=29073&rft.pages=29063-29073&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.689950&rft_dat=%3Cproquest_pubme%3E1737480421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1737480421&rft_id=info:pmid/26451042&rft_els_id=S002192582041230X&rfr_iscdi=true |