Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model

Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2016-01, Vol.74, p.19-30
Hauptverfasser: Lo, Chi Y, Weil, Brian R, Palka, Beth A, Momeni, Arezoo, Canty, John M, Neelamegham, Sriram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 19
container_title Biomaterials
container_volume 74
creator Lo, Chi Y
Weil, Brian R
Palka, Beth A
Momeni, Arezoo
Canty, John M
Neelamegham, Sriram
description Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.
doi_str_mv 10.1016/j.biomaterials.2015.09.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4661077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215007711</els_id><sourcerecordid>1735916435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEokPhFZDFqiwy-JJrF5XQlJtUBFJhbTn2yYyHxE7tZKR5Ox6NE2aoChtmZVn-z3fs__xOkleMLhllxZvtsrG-VyMEq7q45JTlS1ovKS8eJQtWlVWa1zR_nCwoy3haF4yfJc9i3FLc04w_Tc54kQmRVfUi-bmCriNxCq3SQNbdXntwa-sA4W5NbD8Ev4NIInSgR-vSHozF1oYos4FovSO-JT1EcHqz7xWyRuiJRmokF59vV_E1Uc4QrYKxPg4bCJAahO8QcVStrlF1Sb7azo9kpzpr1DiDrSODDxovQ2zUG-itSgMMENrpd-PeG-ieJ09adAFeHNfz5Pv7d99WH9ObLx8-rd7epLqk5ZialvMqZ7QqOTSK6UrUqjCcFiJvddOwJqdGaFYWus55rZpSVcBFBmgu5QpacZ5cHbjD1KAHGtwYVCeHYHsV9tIrK_8-cXYj134ns6JgtCwRcHEEBH83QRxlj69CB5QDP0XJcbYiFzzP_ytlZUkFz-ryFKkoioqWNT1FmtcMkzFTLw9SHXyMAdr7dzIq5wzKrXyYQTlnUNJaYgax-OVDp-5L_4QOBdcHAeC8dhaCjNpifjBZAUMmjben9bn6B6M766xW3Q_YQ9z6Kbi5hsnIJZW382-YPwPLKc6DMfELgd8NlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735916435</pqid></control><display><type>article</type><title>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lo, Chi Y ; Weil, Brian R ; Palka, Beth A ; Momeni, Arezoo ; Canty, John M ; Neelamegham, Sriram</creator><creatorcontrib>Lo, Chi Y ; Weil, Brian R ; Palka, Beth A ; Momeni, Arezoo ; Canty, John M ; Neelamegham, Sriram</creatorcontrib><description>Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.09.026</identifier><identifier>PMID: 26433489</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>adhesion ; Adhesion molecule ; Advanced Basic Science ; Animals ; Blood flow ; Cell adhesion ; Cell Adhesion - physiology ; Cell Membrane - metabolism ; cell proliferation ; Cells, Cultured ; Cellular ; clinical trials ; Dentistry ; Disease Models, Animal ; endothelial cells ; Fucosyltransferases - metabolism ; glycoproteins ; Glycoproteins - metabolism ; heart ; Homing ; inflammation ; Injury prevention ; Joining ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Myocytes, Cardiac - cytology ; palmitic acid ; Pilot Projects ; Pilots ; PSGL-1 ; Recombinant ; Recombinant protein ; Reperfusion Injury - therapy ; Selectin ; Selectins - physiology ; Shear ; Sialyl Lewis-X ; Stem cells ; Swine ; therapeutics</subject><ispartof>Biomaterials, 2016-01, Vol.74, p.19-30</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</citedby><cites>FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</cites><orcidid>0000-0001-8463-4008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961215007711$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26433489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo, Chi Y</creatorcontrib><creatorcontrib>Weil, Brian R</creatorcontrib><creatorcontrib>Palka, Beth A</creatorcontrib><creatorcontrib>Momeni, Arezoo</creatorcontrib><creatorcontrib>Canty, John M</creatorcontrib><creatorcontrib>Neelamegham, Sriram</creatorcontrib><title>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.</description><subject>adhesion</subject><subject>Adhesion molecule</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Blood flow</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Membrane - metabolism</subject><subject>cell proliferation</subject><subject>Cells, Cultured</subject><subject>Cellular</subject><subject>clinical trials</subject><subject>Dentistry</subject><subject>Disease Models, Animal</subject><subject>endothelial cells</subject><subject>Fucosyltransferases - metabolism</subject><subject>glycoproteins</subject><subject>Glycoproteins - metabolism</subject><subject>heart</subject><subject>Homing</subject><subject>inflammation</subject><subject>Injury prevention</subject><subject>Joining</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Myocytes, Cardiac - cytology</subject><subject>palmitic acid</subject><subject>Pilot Projects</subject><subject>Pilots</subject><subject>PSGL-1</subject><subject>Recombinant</subject><subject>Recombinant protein</subject><subject>Reperfusion Injury - therapy</subject><subject>Selectin</subject><subject>Selectins - physiology</subject><subject>Shear</subject><subject>Sialyl Lewis-X</subject><subject>Stem cells</subject><subject>Swine</subject><subject>therapeutics</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNk8tu1DAUhiMEokPhFZDFqiwy-JJrF5XQlJtUBFJhbTn2yYyHxE7tZKR5Ox6NE2aoChtmZVn-z3fs__xOkleMLhllxZvtsrG-VyMEq7q45JTlS1ovKS8eJQtWlVWa1zR_nCwoy3haF4yfJc9i3FLc04w_Tc54kQmRVfUi-bmCriNxCq3SQNbdXntwa-sA4W5NbD8Ev4NIInSgR-vSHozF1oYos4FovSO-JT1EcHqz7xWyRuiJRmokF59vV_E1Uc4QrYKxPg4bCJAahO8QcVStrlF1Sb7azo9kpzpr1DiDrSODDxovQ2zUG-itSgMMENrpd-PeG-ieJ09adAFeHNfz5Pv7d99WH9ObLx8-rd7epLqk5ZialvMqZ7QqOTSK6UrUqjCcFiJvddOwJqdGaFYWus55rZpSVcBFBmgu5QpacZ5cHbjD1KAHGtwYVCeHYHsV9tIrK_8-cXYj134ns6JgtCwRcHEEBH83QRxlj69CB5QDP0XJcbYiFzzP_ytlZUkFz-ryFKkoioqWNT1FmtcMkzFTLw9SHXyMAdr7dzIq5wzKrXyYQTlnUNJaYgax-OVDp-5L_4QOBdcHAeC8dhaCjNpifjBZAUMmjben9bn6B6M766xW3Q_YQ9z6Kbi5hsnIJZW382-YPwPLKc6DMfELgd8NlA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Lo, Chi Y</creator><creator>Weil, Brian R</creator><creator>Palka, Beth A</creator><creator>Momeni, Arezoo</creator><creator>Canty, John M</creator><creator>Neelamegham, Sriram</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8463-4008</orcidid></search><sort><creationdate>20160101</creationdate><title>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</title><author>Lo, Chi Y ; Weil, Brian R ; Palka, Beth A ; Momeni, Arezoo ; Canty, John M ; Neelamegham, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adhesion</topic><topic>Adhesion molecule</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Blood flow</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Membrane - metabolism</topic><topic>cell proliferation</topic><topic>Cells, Cultured</topic><topic>Cellular</topic><topic>clinical trials</topic><topic>Dentistry</topic><topic>Disease Models, Animal</topic><topic>endothelial cells</topic><topic>Fucosyltransferases - metabolism</topic><topic>glycoproteins</topic><topic>Glycoproteins - metabolism</topic><topic>heart</topic><topic>Homing</topic><topic>inflammation</topic><topic>Injury prevention</topic><topic>Joining</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Myocytes, Cardiac - cytology</topic><topic>palmitic acid</topic><topic>Pilot Projects</topic><topic>Pilots</topic><topic>PSGL-1</topic><topic>Recombinant</topic><topic>Recombinant protein</topic><topic>Reperfusion Injury - therapy</topic><topic>Selectin</topic><topic>Selectins - physiology</topic><topic>Shear</topic><topic>Sialyl Lewis-X</topic><topic>Stem cells</topic><topic>Swine</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, Chi Y</creatorcontrib><creatorcontrib>Weil, Brian R</creatorcontrib><creatorcontrib>Palka, Beth A</creatorcontrib><creatorcontrib>Momeni, Arezoo</creatorcontrib><creatorcontrib>Canty, John M</creatorcontrib><creatorcontrib>Neelamegham, Sriram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Chi Y</au><au>Weil, Brian R</au><au>Palka, Beth A</au><au>Momeni, Arezoo</au><au>Canty, John M</au><au>Neelamegham, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>74</volume><spage>19</spage><epage>30</epage><pages>19-30</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26433489</pmid><doi>10.1016/j.biomaterials.2015.09.026</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8463-4008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2016-01, Vol.74, p.19-30
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4661077
source MEDLINE; Elsevier ScienceDirect Journals
subjects adhesion
Adhesion molecule
Advanced Basic Science
Animals
Blood flow
Cell adhesion
Cell Adhesion - physiology
Cell Membrane - metabolism
cell proliferation
Cells, Cultured
Cellular
clinical trials
Dentistry
Disease Models, Animal
endothelial cells
Fucosyltransferases - metabolism
glycoproteins
Glycoproteins - metabolism
heart
Homing
inflammation
Injury prevention
Joining
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Myocytes, Cardiac - cytology
palmitic acid
Pilot Projects
Pilots
PSGL-1
Recombinant
Recombinant protein
Reperfusion Injury - therapy
Selectin
Selectins - physiology
Shear
Sialyl Lewis-X
Stem cells
Swine
therapeutics
title Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20surface%20glycoengineering%20improves%20selectin-mediated%20adhesion%20of%20mesenchymal%20stem%20cells%20(MSCs)%20and%20cardiosphere-derived%20cells%20(CDCs):%20Pilot%20validation%20in%20porcine%20ischemia-reperfusion%20model&rft.jtitle=Biomaterials&rft.au=Lo,%20Chi%20Y&rft.date=2016-01-01&rft.volume=74&rft.spage=19&rft.epage=30&rft.pages=19-30&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.09.026&rft_dat=%3Cproquest_pubme%3E1735916435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735916435&rft_id=info:pmid/26433489&rft_els_id=S0142961215007711&rfr_iscdi=true