Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model
Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeti...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2016-01, Vol.74, p.19-30 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Biomaterials |
container_volume | 74 |
creator | Lo, Chi Y Weil, Brian R Palka, Beth A Momeni, Arezoo Canty, John M Neelamegham, Sriram |
description | Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment. |
doi_str_mv | 10.1016/j.biomaterials.2015.09.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4661077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961215007711</els_id><sourcerecordid>1735916435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEokPhFZDFqiwy-JJrF5XQlJtUBFJhbTn2yYyHxE7tZKR5Ox6NE2aoChtmZVn-z3fs__xOkleMLhllxZvtsrG-VyMEq7q45JTlS1ovKS8eJQtWlVWa1zR_nCwoy3haF4yfJc9i3FLc04w_Tc54kQmRVfUi-bmCriNxCq3SQNbdXntwa-sA4W5NbD8Ev4NIInSgR-vSHozF1oYos4FovSO-JT1EcHqz7xWyRuiJRmokF59vV_E1Uc4QrYKxPg4bCJAahO8QcVStrlF1Sb7azo9kpzpr1DiDrSODDxovQ2zUG-itSgMMENrpd-PeG-ieJ09adAFeHNfz5Pv7d99WH9ObLx8-rd7epLqk5ZialvMqZ7QqOTSK6UrUqjCcFiJvddOwJqdGaFYWus55rZpSVcBFBmgu5QpacZ5cHbjD1KAHGtwYVCeHYHsV9tIrK_8-cXYj134ns6JgtCwRcHEEBH83QRxlj69CB5QDP0XJcbYiFzzP_ytlZUkFz-ryFKkoioqWNT1FmtcMkzFTLw9SHXyMAdr7dzIq5wzKrXyYQTlnUNJaYgax-OVDp-5L_4QOBdcHAeC8dhaCjNpifjBZAUMmjben9bn6B6M766xW3Q_YQ9z6Kbi5hsnIJZW382-YPwPLKc6DMfELgd8NlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735916435</pqid></control><display><type>article</type><title>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lo, Chi Y ; Weil, Brian R ; Palka, Beth A ; Momeni, Arezoo ; Canty, John M ; Neelamegham, Sriram</creator><creatorcontrib>Lo, Chi Y ; Weil, Brian R ; Palka, Beth A ; Momeni, Arezoo ; Canty, John M ; Neelamegham, Sriram</creatorcontrib><description>Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.09.026</identifier><identifier>PMID: 26433489</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>adhesion ; Adhesion molecule ; Advanced Basic Science ; Animals ; Blood flow ; Cell adhesion ; Cell Adhesion - physiology ; Cell Membrane - metabolism ; cell proliferation ; Cells, Cultured ; Cellular ; clinical trials ; Dentistry ; Disease Models, Animal ; endothelial cells ; Fucosyltransferases - metabolism ; glycoproteins ; Glycoproteins - metabolism ; heart ; Homing ; inflammation ; Injury prevention ; Joining ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Myocytes, Cardiac - cytology ; palmitic acid ; Pilot Projects ; Pilots ; PSGL-1 ; Recombinant ; Recombinant protein ; Reperfusion Injury - therapy ; Selectin ; Selectins - physiology ; Shear ; Sialyl Lewis-X ; Stem cells ; Swine ; therapeutics</subject><ispartof>Biomaterials, 2016-01, Vol.74, p.19-30</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</citedby><cites>FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</cites><orcidid>0000-0001-8463-4008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961215007711$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26433489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo, Chi Y</creatorcontrib><creatorcontrib>Weil, Brian R</creatorcontrib><creatorcontrib>Palka, Beth A</creatorcontrib><creatorcontrib>Momeni, Arezoo</creatorcontrib><creatorcontrib>Canty, John M</creatorcontrib><creatorcontrib>Neelamegham, Sriram</creatorcontrib><title>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.</description><subject>adhesion</subject><subject>Adhesion molecule</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Blood flow</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Membrane - metabolism</subject><subject>cell proliferation</subject><subject>Cells, Cultured</subject><subject>Cellular</subject><subject>clinical trials</subject><subject>Dentistry</subject><subject>Disease Models, Animal</subject><subject>endothelial cells</subject><subject>Fucosyltransferases - metabolism</subject><subject>glycoproteins</subject><subject>Glycoproteins - metabolism</subject><subject>heart</subject><subject>Homing</subject><subject>inflammation</subject><subject>Injury prevention</subject><subject>Joining</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Myocytes, Cardiac - cytology</subject><subject>palmitic acid</subject><subject>Pilot Projects</subject><subject>Pilots</subject><subject>PSGL-1</subject><subject>Recombinant</subject><subject>Recombinant protein</subject><subject>Reperfusion Injury - therapy</subject><subject>Selectin</subject><subject>Selectins - physiology</subject><subject>Shear</subject><subject>Sialyl Lewis-X</subject><subject>Stem cells</subject><subject>Swine</subject><subject>therapeutics</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNk8tu1DAUhiMEokPhFZDFqiwy-JJrF5XQlJtUBFJhbTn2yYyHxE7tZKR5Ox6NE2aoChtmZVn-z3fs__xOkleMLhllxZvtsrG-VyMEq7q45JTlS1ovKS8eJQtWlVWa1zR_nCwoy3haF4yfJc9i3FLc04w_Tc54kQmRVfUi-bmCriNxCq3SQNbdXntwa-sA4W5NbD8Ev4NIInSgR-vSHozF1oYos4FovSO-JT1EcHqz7xWyRuiJRmokF59vV_E1Uc4QrYKxPg4bCJAahO8QcVStrlF1Sb7azo9kpzpr1DiDrSODDxovQ2zUG-itSgMMENrpd-PeG-ieJ09adAFeHNfz5Pv7d99WH9ObLx8-rd7epLqk5ZialvMqZ7QqOTSK6UrUqjCcFiJvddOwJqdGaFYWus55rZpSVcBFBmgu5QpacZ5cHbjD1KAHGtwYVCeHYHsV9tIrK_8-cXYj134ns6JgtCwRcHEEBH83QRxlj69CB5QDP0XJcbYiFzzP_ytlZUkFz-ryFKkoioqWNT1FmtcMkzFTLw9SHXyMAdr7dzIq5wzKrXyYQTlnUNJaYgax-OVDp-5L_4QOBdcHAeC8dhaCjNpifjBZAUMmjben9bn6B6M766xW3Q_YQ9z6Kbi5hsnIJZW382-YPwPLKc6DMfELgd8NlA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Lo, Chi Y</creator><creator>Weil, Brian R</creator><creator>Palka, Beth A</creator><creator>Momeni, Arezoo</creator><creator>Canty, John M</creator><creator>Neelamegham, Sriram</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8463-4008</orcidid></search><sort><creationdate>20160101</creationdate><title>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</title><author>Lo, Chi Y ; Weil, Brian R ; Palka, Beth A ; Momeni, Arezoo ; Canty, John M ; Neelamegham, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-df228510872eba1c839a6d20635fcbb1b50d3c176c9529ab7a8e234e20102aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adhesion</topic><topic>Adhesion molecule</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Blood flow</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Membrane - metabolism</topic><topic>cell proliferation</topic><topic>Cells, Cultured</topic><topic>Cellular</topic><topic>clinical trials</topic><topic>Dentistry</topic><topic>Disease Models, Animal</topic><topic>endothelial cells</topic><topic>Fucosyltransferases - metabolism</topic><topic>glycoproteins</topic><topic>Glycoproteins - metabolism</topic><topic>heart</topic><topic>Homing</topic><topic>inflammation</topic><topic>Injury prevention</topic><topic>Joining</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Myocytes, Cardiac - cytology</topic><topic>palmitic acid</topic><topic>Pilot Projects</topic><topic>Pilots</topic><topic>PSGL-1</topic><topic>Recombinant</topic><topic>Recombinant protein</topic><topic>Reperfusion Injury - therapy</topic><topic>Selectin</topic><topic>Selectins - physiology</topic><topic>Shear</topic><topic>Sialyl Lewis-X</topic><topic>Stem cells</topic><topic>Swine</topic><topic>therapeutics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, Chi Y</creatorcontrib><creatorcontrib>Weil, Brian R</creatorcontrib><creatorcontrib>Palka, Beth A</creatorcontrib><creatorcontrib>Momeni, Arezoo</creatorcontrib><creatorcontrib>Canty, John M</creatorcontrib><creatorcontrib>Neelamegham, Sriram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Chi Y</au><au>Weil, Brian R</au><au>Palka, Beth A</au><au>Momeni, Arezoo</au><au>Canty, John M</au><au>Neelamegham, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>74</volume><spage>19</spage><epage>30</epage><pages>19-30</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Promising results are emerging in clinical trials focused on stem cell therapy for cardiology applications. However, the low homing and engraftment of the injected cells to target tissue continues to be a problem. Cellular glycoengineering can address this limitation by enabling the targeting of stem cells to sites of vascular injury/inflammation. Two such glycoengineering methods are presented here: i. The non-covalent incorporation of a P-selectin glycoprotein ligand-1 (PSGL-1) mimetic 19Fc[FUT7+ ] via lipid-protein G fusion intermediates that intercalate onto the cell surface, and ii. Over-expression of the α(1,3)fucosyltransferse FUT7 in cells. Results demonstrate the efficient coupling of 19Fc[FUT7+ ] onto both cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs), with coupling being more efficient when using protein G fused to single-tailed palmitic acid rather than double-tailed DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). This non-covalent cellular modification was mild since cell proliferation and stem-cell marker expression was unaltered. Whereas coupling using 19Fc[FUT7+ ] enhanced cell capture on recombinant P-selectin or CHO-P cell surfaces, α(1,3)fucosylation was necessary for robust binding to E-selectin and inflamed endothelial cells under shear. Pilot studies confirm the safety and homing efficacy of the modified stem cells to sites of ischemia-reperfusion in the porcine heart. Overall, glycoengineering with physiological selectin-ligands may enhance stem cell engraftment.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26433489</pmid><doi>10.1016/j.biomaterials.2015.09.026</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8463-4008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2016-01, Vol.74, p.19-30 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4661077 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | adhesion Adhesion molecule Advanced Basic Science Animals Blood flow Cell adhesion Cell Adhesion - physiology Cell Membrane - metabolism cell proliferation Cells, Cultured Cellular clinical trials Dentistry Disease Models, Animal endothelial cells Fucosyltransferases - metabolism glycoproteins Glycoproteins - metabolism heart Homing inflammation Injury prevention Joining Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Myocytes, Cardiac - cytology palmitic acid Pilot Projects Pilots PSGL-1 Recombinant Recombinant protein Reperfusion Injury - therapy Selectin Selectins - physiology Shear Sialyl Lewis-X Stem cells Swine therapeutics |
title | Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20surface%20glycoengineering%20improves%20selectin-mediated%20adhesion%20of%20mesenchymal%20stem%20cells%20(MSCs)%20and%20cardiosphere-derived%20cells%20(CDCs):%20Pilot%20validation%20in%20porcine%20ischemia-reperfusion%20model&rft.jtitle=Biomaterials&rft.au=Lo,%20Chi%20Y&rft.date=2016-01-01&rft.volume=74&rft.spage=19&rft.epage=30&rft.pages=19-30&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.09.026&rft_dat=%3Cproquest_pubme%3E1735916435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735916435&rft_id=info:pmid/26433489&rft_els_id=S0142961215007711&rfr_iscdi=true |