Transient misfolding dominates multidomain protein folding
Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinet...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-11, Vol.6 (1), p.8861-8861, Article 8861 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8861 |
---|---|
container_issue | 1 |
container_start_page | 8861 |
container_title | Nature communications |
container_volume | 6 |
creator | Borgia, Alessandro Kemplen, Katherine R. Borgia, Madeleine B. Soranno, Andrea Shammas, Sarah Wunderlich, Bengt Nettels, Daniel Best, Robert B. Clarke, Jane Schuler, Benjamin |
description | Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated.
Single molecule kinetics investigations and molecular simulations are useful tools in elucidating protein assembly mechanisms. Here, the authors use these to show that even naturally occurring tandem repeats undergo transient misfolding and that assembly is much more complex than we previously understood. |
doi_str_mv | 10.1038/ncomms9861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4660218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735900346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-2be264efce53c0fd462dd06849af337ef60a4bbafe5de7234b45de09c9588ac03</originalsourceid><addsrcrecordid>eNplkc1KAzEUhYMoVmo3PoAMuBGlmkwymcSFIMU_KLip65DJJDVlJqnJjODbm9Jaq2Zzb7gfJ-fmAHCC4BWCmF075ds2ckbRHjjKIUFjVOZ4f6cfgFGMC5gO5ogRcggGOS3KnFN-BG5mQbpoteuy1kbjm9q6eVb71jrZ6Zi1fdPZdJXWZcvgO53qhjoGB0Y2UY82dQheH-5nk6fx9OXxeXI3HasCsm6cVzqnRBulC6ygqQnN6xpSRrg0GJfaUChJVUmji1onu6QiqYFc8YIxqSAegtu17rKvWl2r5DXIRiyDbWX4FF5a8Xvi7JuY-w9BKIU5YkngfCMQ_HuvYyfSqko3jXTa91GgEhc8_Q6hCT37gy58H1xab0VhwmhCE3WxplTwMQZttmYQFKtUxE8qCT7dtb9FvzNIwOUaiGnk5jrsvPlf7gtHoZlp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733486359</pqid></control><display><type>article</type><title>Transient misfolding dominates multidomain protein folding</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Borgia, Alessandro ; Kemplen, Katherine R. ; Borgia, Madeleine B. ; Soranno, Andrea ; Shammas, Sarah ; Wunderlich, Bengt ; Nettels, Daniel ; Best, Robert B. ; Clarke, Jane ; Schuler, Benjamin</creator><creatorcontrib>Borgia, Alessandro ; Kemplen, Katherine R. ; Borgia, Madeleine B. ; Soranno, Andrea ; Shammas, Sarah ; Wunderlich, Bengt ; Nettels, Daniel ; Best, Robert B. ; Clarke, Jane ; Schuler, Benjamin</creatorcontrib><description>Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated.
Single molecule kinetics investigations and molecular simulations are useful tools in elucidating protein assembly mechanisms. Here, the authors use these to show that even naturally occurring tandem repeats undergo transient misfolding and that assembly is much more complex than we previously understood.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9861</identifier><identifier>PMID: 26572969</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/33 ; 14/34 ; 140/125 ; 631/337/470/2284 ; 631/45/470 ; 631/57/2265 ; 82/62 ; Amyloid ; Connectin - chemistry ; Connectin - metabolism ; Fluorescence Resonance Energy Transfer ; Humanities and Social Sciences ; Humans ; Kinetics ; Microfluidics ; Molecular Dynamics Simulation ; multidisciplinary ; Protein Folding ; Protein Structure, Tertiary ; Protein Unfolding ; Repetitive Sequences, Amino Acid ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-11, Vol.6 (1), p.8861-8861, Article 8861</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Nov 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-2be264efce53c0fd462dd06849af337ef60a4bbafe5de7234b45de09c9588ac03</citedby><cites>FETCH-LOGICAL-c508t-2be264efce53c0fd462dd06849af337ef60a4bbafe5de7234b45de09c9588ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660218/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660218/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26572969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgia, Alessandro</creatorcontrib><creatorcontrib>Kemplen, Katherine R.</creatorcontrib><creatorcontrib>Borgia, Madeleine B.</creatorcontrib><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Shammas, Sarah</creatorcontrib><creatorcontrib>Wunderlich, Bengt</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Best, Robert B.</creatorcontrib><creatorcontrib>Clarke, Jane</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Transient misfolding dominates multidomain protein folding</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated.
Single molecule kinetics investigations and molecular simulations are useful tools in elucidating protein assembly mechanisms. Here, the authors use these to show that even naturally occurring tandem repeats undergo transient misfolding and that assembly is much more complex than we previously understood.</description><subject>14/19</subject><subject>14/33</subject><subject>14/34</subject><subject>140/125</subject><subject>631/337/470/2284</subject><subject>631/45/470</subject><subject>631/57/2265</subject><subject>82/62</subject><subject>Amyloid</subject><subject>Connectin - chemistry</subject><subject>Connectin - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Microfluidics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Unfolding</subject><subject>Repetitive Sequences, Amino Acid</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc1KAzEUhYMoVmo3PoAMuBGlmkwymcSFIMU_KLip65DJJDVlJqnJjODbm9Jaq2Zzb7gfJ-fmAHCC4BWCmF075ds2ckbRHjjKIUFjVOZ4f6cfgFGMC5gO5ogRcggGOS3KnFN-BG5mQbpoteuy1kbjm9q6eVb71jrZ6Zi1fdPZdJXWZcvgO53qhjoGB0Y2UY82dQheH-5nk6fx9OXxeXI3HasCsm6cVzqnRBulC6ygqQnN6xpSRrg0GJfaUChJVUmji1onu6QiqYFc8YIxqSAegtu17rKvWl2r5DXIRiyDbWX4FF5a8Xvi7JuY-w9BKIU5YkngfCMQ_HuvYyfSqko3jXTa91GgEhc8_Q6hCT37gy58H1xab0VhwmhCE3WxplTwMQZttmYQFKtUxE8qCT7dtb9FvzNIwOUaiGnk5jrsvPlf7gtHoZlp</recordid><startdate>20151117</startdate><enddate>20151117</enddate><creator>Borgia, Alessandro</creator><creator>Kemplen, Katherine R.</creator><creator>Borgia, Madeleine B.</creator><creator>Soranno, Andrea</creator><creator>Shammas, Sarah</creator><creator>Wunderlich, Bengt</creator><creator>Nettels, Daniel</creator><creator>Best, Robert B.</creator><creator>Clarke, Jane</creator><creator>Schuler, Benjamin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151117</creationdate><title>Transient misfolding dominates multidomain protein folding</title><author>Borgia, Alessandro ; Kemplen, Katherine R. ; Borgia, Madeleine B. ; Soranno, Andrea ; Shammas, Sarah ; Wunderlich, Bengt ; Nettels, Daniel ; Best, Robert B. ; Clarke, Jane ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-2be264efce53c0fd462dd06849af337ef60a4bbafe5de7234b45de09c9588ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/19</topic><topic>14/33</topic><topic>14/34</topic><topic>140/125</topic><topic>631/337/470/2284</topic><topic>631/45/470</topic><topic>631/57/2265</topic><topic>82/62</topic><topic>Amyloid</topic><topic>Connectin - chemistry</topic><topic>Connectin - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Microfluidics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Unfolding</topic><topic>Repetitive Sequences, Amino Acid</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgia, Alessandro</creatorcontrib><creatorcontrib>Kemplen, Katherine R.</creatorcontrib><creatorcontrib>Borgia, Madeleine B.</creatorcontrib><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Shammas, Sarah</creatorcontrib><creatorcontrib>Wunderlich, Bengt</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Best, Robert B.</creatorcontrib><creatorcontrib>Clarke, Jane</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgia, Alessandro</au><au>Kemplen, Katherine R.</au><au>Borgia, Madeleine B.</au><au>Soranno, Andrea</au><au>Shammas, Sarah</au><au>Wunderlich, Bengt</au><au>Nettels, Daniel</au><au>Best, Robert B.</au><au>Clarke, Jane</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient misfolding dominates multidomain protein folding</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-11-17</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8861</spage><epage>8861</epage><pages>8861-8861</pages><artnum>8861</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Neighbouring domains of multidomain proteins with homologous tandem repeats have divergent sequences, probably as a result of evolutionary pressure to avoid misfolding and aggregation, particularly at the high cellular protein concentrations. Here we combine microfluidic-mixing single-molecule kinetics, ensemble experiments and molecular simulations to investigate how misfolding between the immunoglobulin-like domains of titin is prevented. Surprisingly, we find that during refolding of tandem repeats, independent of sequence identity, more than half of all molecules transiently form a wide range of misfolded conformations. Simulations suggest that a large fraction of these misfolds resemble an intramolecular amyloid-like state reported in computational studies. However, for naturally occurring neighbours with low sequence identity, these transient misfolds disappear much more rapidly than for identical neighbours. We thus propose that evolutionary sequence divergence between domains is required to suppress the population of long-lived, potentially harmful misfolded states, whereas large populations of transient misfolded states appear to be tolerated.
Single molecule kinetics investigations and molecular simulations are useful tools in elucidating protein assembly mechanisms. Here, the authors use these to show that even naturally occurring tandem repeats undergo transient misfolding and that assembly is much more complex than we previously understood.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26572969</pmid><doi>10.1038/ncomms9861</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-11, Vol.6 (1), p.8861-8861, Article 8861 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4660218 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 14/19 14/33 14/34 140/125 631/337/470/2284 631/45/470 631/57/2265 82/62 Amyloid Connectin - chemistry Connectin - metabolism Fluorescence Resonance Energy Transfer Humanities and Social Sciences Humans Kinetics Microfluidics Molecular Dynamics Simulation multidisciplinary Protein Folding Protein Structure, Tertiary Protein Unfolding Repetitive Sequences, Amino Acid Science Science (multidisciplinary) |
title | Transient misfolding dominates multidomain protein folding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20misfolding%20dominates%20multidomain%20protein%20folding&rft.jtitle=Nature%20communications&rft.au=Borgia,%20Alessandro&rft.date=2015-11-17&rft.volume=6&rft.issue=1&rft.spage=8861&rft.epage=8861&rft.pages=8861-8861&rft.artnum=8861&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9861&rft_dat=%3Cproquest_pubme%3E1735900346%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733486359&rft_id=info:pmid/26572969&rfr_iscdi=true |