Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference

Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This “activity-guided screening” method has been largely abandoned because it repeatedly rediscovers those compounds th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2015-11, Vol.10 (11), p.2616-2623
Hauptverfasser: Pimentel-Elardo, Sheila M, Sørensen, Dan, Ho, Louis, Ziko, Mikaela, Bueler, Stephanie A, Lu, Stella, Tao, Joe, Moser, Arvin, Lee, Richard, Agard, David, Fairn, Greg, Rubinstein, John L, Shoichet, Brian K, Nodwell, Justin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2623
container_issue 11
container_start_page 2616
container_title ACS chemical biology
container_volume 10
creator Pimentel-Elardo, Sheila M
Sørensen, Dan
Ho, Louis
Ziko, Mikaela
Bueler, Stephanie A
Lu, Stella
Tao, Joe
Moser, Arvin
Lee, Richard
Agard, David
Fairn, Greg
Rubinstein, John L
Shoichet, Brian K
Nodwell, Justin R
description Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This “activity-guided screening” method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of “cryptic” secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.
doi_str_mv 10.1021/acschembio.5b00612
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4658348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735327393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-615e847e2ee9d2c22ea8bb0971643dfd245501a3e35eaa77318faa4348aca0a3</originalsourceid><addsrcrecordid>eNp9UU1PGzEQtaqiho_-AQ5oj71s8Md6Py6VUBogUhAHwtma9c6C0a6d2k4k_n2NElK4cPHYM--98cwj5JzRKaOcXYIO-hnH1ripbCktGf9GjpmURV43ovp-uPNmQk5CeKG0EGXd_CATXgrJOWPHxF3paLYmvuYL2-Ea02Fj9scE7bboXzPXZw-one0gPe4wQusGEzFkj8HYp2yW-hsNQzYfjDYRonE2A9vtCrZ3fkw5nS1sjx6txjNy1MMQ8Oc-npLV9Xw1u82X9zeL2dUyB0mrmJdMYl1UyBGbjmvOEeq2pU3FykJ0fccLKSkDgUIiQFUJVvcAhShq0EBBnJLfO9n1ph2x02koD4NaezOmQZQDoz5XrHlWT26rilLWSSUJ_NoLePd3gyGqMe0EhwEsuk1QrBJS8Eo0IkH5Dqq9C8Fjf2jDqHozSv03Su2NSqSLjx88UN6dSYDpDpDI6sVtvE3r-krxH70OpLY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735327393</pqid></control><display><type>article</type><title>Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference</title><source>ACS Publications</source><source>MEDLINE</source><creator>Pimentel-Elardo, Sheila M ; Sørensen, Dan ; Ho, Louis ; Ziko, Mikaela ; Bueler, Stephanie A ; Lu, Stella ; Tao, Joe ; Moser, Arvin ; Lee, Richard ; Agard, David ; Fairn, Greg ; Rubinstein, John L ; Shoichet, Brian K ; Nodwell, Justin R</creator><creatorcontrib>Pimentel-Elardo, Sheila M ; Sørensen, Dan ; Ho, Louis ; Ziko, Mikaela ; Bueler, Stephanie A ; Lu, Stella ; Tao, Joe ; Moser, Arvin ; Lee, Richard ; Agard, David ; Fairn, Greg ; Rubinstein, John L ; Shoichet, Brian K ; Nodwell, Justin R</creatorcontrib><description>Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This “activity-guided screening” method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of “cryptic” secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.5b00612</identifier><identifier>PMID: 26352211</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetanilides - chemistry ; Acetanilides - pharmacology ; Actinobacteria - chemistry ; Actinobacteria - genetics ; Actinobacteria - growth &amp; development ; Actinobacteria - metabolism ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - isolation &amp; purification ; Anti-Bacterial Agents - pharmacology ; Bacteria - drug effects ; Biological Products - chemistry ; Biological Products - metabolism ; Chromatography, Liquid ; Drug Discovery - methods ; HSP90 Heat-Shock Proteins - antagonists &amp; inhibitors ; Macrolides - chemistry ; Macrolides - pharmacology ; Phenyl Ethers - chemistry ; Phenyl Ethers - pharmacology</subject><ispartof>ACS chemical biology, 2015-11, Vol.10 (11), p.2616-2623</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-615e847e2ee9d2c22ea8bb0971643dfd245501a3e35eaa77318faa4348aca0a3</citedby><cites>FETCH-LOGICAL-a507t-615e847e2ee9d2c22ea8bb0971643dfd245501a3e35eaa77318faa4348aca0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.5b00612$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.5b00612$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26352211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pimentel-Elardo, Sheila M</creatorcontrib><creatorcontrib>Sørensen, Dan</creatorcontrib><creatorcontrib>Ho, Louis</creatorcontrib><creatorcontrib>Ziko, Mikaela</creatorcontrib><creatorcontrib>Bueler, Stephanie A</creatorcontrib><creatorcontrib>Lu, Stella</creatorcontrib><creatorcontrib>Tao, Joe</creatorcontrib><creatorcontrib>Moser, Arvin</creatorcontrib><creatorcontrib>Lee, Richard</creatorcontrib><creatorcontrib>Agard, David</creatorcontrib><creatorcontrib>Fairn, Greg</creatorcontrib><creatorcontrib>Rubinstein, John L</creatorcontrib><creatorcontrib>Shoichet, Brian K</creatorcontrib><creatorcontrib>Nodwell, Justin R</creatorcontrib><title>Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This “activity-guided screening” method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of “cryptic” secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.</description><subject>Acetanilides - chemistry</subject><subject>Acetanilides - pharmacology</subject><subject>Actinobacteria - chemistry</subject><subject>Actinobacteria - genetics</subject><subject>Actinobacteria - growth &amp; development</subject><subject>Actinobacteria - metabolism</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - isolation &amp; purification</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacteria - drug effects</subject><subject>Biological Products - chemistry</subject><subject>Biological Products - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Drug Discovery - methods</subject><subject>HSP90 Heat-Shock Proteins - antagonists &amp; inhibitors</subject><subject>Macrolides - chemistry</subject><subject>Macrolides - pharmacology</subject><subject>Phenyl Ethers - chemistry</subject><subject>Phenyl Ethers - pharmacology</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1PGzEQtaqiho_-AQ5oj71s8Md6Py6VUBogUhAHwtma9c6C0a6d2k4k_n2NElK4cPHYM--98cwj5JzRKaOcXYIO-hnH1ripbCktGf9GjpmURV43ovp-uPNmQk5CeKG0EGXd_CATXgrJOWPHxF3paLYmvuYL2-Ea02Fj9scE7bboXzPXZw-one0gPe4wQusGEzFkj8HYp2yW-hsNQzYfjDYRonE2A9vtCrZ3fkw5nS1sjx6txjNy1MMQ8Oc-npLV9Xw1u82X9zeL2dUyB0mrmJdMYl1UyBGbjmvOEeq2pU3FykJ0fccLKSkDgUIiQFUJVvcAhShq0EBBnJLfO9n1ph2x02koD4NaezOmQZQDoz5XrHlWT26rilLWSSUJ_NoLePd3gyGqMe0EhwEsuk1QrBJS8Eo0IkH5Dqq9C8Fjf2jDqHozSv03Su2NSqSLjx88UN6dSYDpDpDI6sVtvE3r-krxH70OpLY</recordid><startdate>20151120</startdate><enddate>20151120</enddate><creator>Pimentel-Elardo, Sheila M</creator><creator>Sørensen, Dan</creator><creator>Ho, Louis</creator><creator>Ziko, Mikaela</creator><creator>Bueler, Stephanie A</creator><creator>Lu, Stella</creator><creator>Tao, Joe</creator><creator>Moser, Arvin</creator><creator>Lee, Richard</creator><creator>Agard, David</creator><creator>Fairn, Greg</creator><creator>Rubinstein, John L</creator><creator>Shoichet, Brian K</creator><creator>Nodwell, Justin R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151120</creationdate><title>Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference</title><author>Pimentel-Elardo, Sheila M ; Sørensen, Dan ; Ho, Louis ; Ziko, Mikaela ; Bueler, Stephanie A ; Lu, Stella ; Tao, Joe ; Moser, Arvin ; Lee, Richard ; Agard, David ; Fairn, Greg ; Rubinstein, John L ; Shoichet, Brian K ; Nodwell, Justin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-615e847e2ee9d2c22ea8bb0971643dfd245501a3e35eaa77318faa4348aca0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetanilides - chemistry</topic><topic>Acetanilides - pharmacology</topic><topic>Actinobacteria - chemistry</topic><topic>Actinobacteria - genetics</topic><topic>Actinobacteria - growth &amp; development</topic><topic>Actinobacteria - metabolism</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - isolation &amp; purification</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacteria - drug effects</topic><topic>Biological Products - chemistry</topic><topic>Biological Products - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Drug Discovery - methods</topic><topic>HSP90 Heat-Shock Proteins - antagonists &amp; inhibitors</topic><topic>Macrolides - chemistry</topic><topic>Macrolides - pharmacology</topic><topic>Phenyl Ethers - chemistry</topic><topic>Phenyl Ethers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pimentel-Elardo, Sheila M</creatorcontrib><creatorcontrib>Sørensen, Dan</creatorcontrib><creatorcontrib>Ho, Louis</creatorcontrib><creatorcontrib>Ziko, Mikaela</creatorcontrib><creatorcontrib>Bueler, Stephanie A</creatorcontrib><creatorcontrib>Lu, Stella</creatorcontrib><creatorcontrib>Tao, Joe</creatorcontrib><creatorcontrib>Moser, Arvin</creatorcontrib><creatorcontrib>Lee, Richard</creatorcontrib><creatorcontrib>Agard, David</creatorcontrib><creatorcontrib>Fairn, Greg</creatorcontrib><creatorcontrib>Rubinstein, John L</creatorcontrib><creatorcontrib>Shoichet, Brian K</creatorcontrib><creatorcontrib>Nodwell, Justin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pimentel-Elardo, Sheila M</au><au>Sørensen, Dan</au><au>Ho, Louis</au><au>Ziko, Mikaela</au><au>Bueler, Stephanie A</au><au>Lu, Stella</au><au>Tao, Joe</au><au>Moser, Arvin</au><au>Lee, Richard</au><au>Agard, David</au><au>Fairn, Greg</au><au>Rubinstein, John L</au><au>Shoichet, Brian K</au><au>Nodwell, Justin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2015-11-20</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>2616</spage><epage>2623</epage><pages>2616-2623</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This “activity-guided screening” method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of “cryptic” secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26352211</pmid><doi>10.1021/acschembio.5b00612</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2015-11, Vol.10 (11), p.2616-2623
issn 1554-8929
1554-8937
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4658348
source ACS Publications; MEDLINE
subjects Acetanilides - chemistry
Acetanilides - pharmacology
Actinobacteria - chemistry
Actinobacteria - genetics
Actinobacteria - growth & development
Actinobacteria - metabolism
Anti-Bacterial Agents - biosynthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - isolation & purification
Anti-Bacterial Agents - pharmacology
Bacteria - drug effects
Biological Products - chemistry
Biological Products - metabolism
Chromatography, Liquid
Drug Discovery - methods
HSP90 Heat-Shock Proteins - antagonists & inhibitors
Macrolides - chemistry
Macrolides - pharmacology
Phenyl Ethers - chemistry
Phenyl Ethers - pharmacology
title Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-Independent%20Discovery%20of%20Secondary%20Metabolites%20Using%20Chemical%20Elicitation%20and%20Cheminformatic%20Inference&rft.jtitle=ACS%20chemical%20biology&rft.au=Pimentel-Elardo,%20Sheila%20M&rft.date=2015-11-20&rft.volume=10&rft.issue=11&rft.spage=2616&rft.epage=2623&rft.pages=2616-2623&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.5b00612&rft_dat=%3Cproquest_pubme%3E1735327393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735327393&rft_id=info:pmid/26352211&rfr_iscdi=true