Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations

Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2016-01, Vol.124 (Pt A), p.43-53
Hauptverfasser: Gilbert, Jessica R., Symmonds, Mkael, Hanna, Michael G., Dolan, Raymond J., Friston, Karl J., Moran, Rosalyn J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue Pt A
container_start_page 43
container_title NeuroImage (Orlando, Fla.)
container_volume 124
creator Gilbert, Jessica R.
Symmonds, Mkael
Hanna, Michael G.
Dolan, Raymond J.
Friston, Karl J.
Moran, Rosalyn J.
description Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. •Dynamic causal modeling (DCM) for M/EEG includes ion channel parameter estimates.•Parameter estimates from patients with monogenic ion channelopathies were compared.•Synaptic channel abnormality was identified in patients, with specificity above 89%.•DCM could serve as a platform for non-invasively assaying brain molecular dynamics.
doi_str_mv 10.1016/j.neuroimage.2015.08.057
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4655917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811915007788</els_id><sourcerecordid>1751213538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5fc7d43841182088d84ef8a16836740758deb10887146eee1ad214687872027b3</originalsourceid><addsrcrecordid>eNqNkk2P1DAMhisEYj_gL6BIXLh0iJOmSTkgwYgFpJXgAOcok7gzGbXJkLSD9hfwt0mZZfm4wMmW_Pi1Lb9VRYCugEL7fL8KOKfoR7PFFaMgVlStqJD3qnOgnag7Idn9JRe8VgDdWXWR855S2kGjHlZnrOUNE0ydV98-ptj7wYct-SEZzEB8DMTuTAg4xIOZdh4z-eqnHQkx1D4cTfZHJJtkfCDLCkuzCY64m2BGb4k1cy4yY3Q45BdkbTKSPM1u0Yk9yYUfkGwxIBnnyUxlXn5UPejNkPHxbbysPl-9-bR-V19_ePt-_eq6tqKhUy16K13DVQOgGFXKqQZ7ZaBVvJUNlUI53EApSGhaRATjWMmUVJJRJjf8snp50j3MmxGdxTAlM-hDKoekGx2N139Wgt_pbTzqphWiA1kEnt0KpPhlxjzp0WeLw2ACxjlrkAIYcMHVf6BcdLTlbFF9-he6j3MqzzhRnEoq20KpE2VTzDlhf7c3UL0YQ-_1L2PoxRiaKl2MUVqf_H73XeNPJxTg9QkoP8Ojx6Sz9RgsOp_QTtpF_-8p3wEFbtDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735307076</pqid></control><display><type>article</type><title>Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Gilbert, Jessica R. ; Symmonds, Mkael ; Hanna, Michael G. ; Dolan, Raymond J. ; Friston, Karl J. ; Moran, Rosalyn J.</creator><creatorcontrib>Gilbert, Jessica R. ; Symmonds, Mkael ; Hanna, Michael G. ; Dolan, Raymond J. ; Friston, Karl J. ; Moran, Rosalyn J.</creatorcontrib><description>Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. •Dynamic causal modeling (DCM) for M/EEG includes ion channel parameter estimates.•Parameter estimates from patients with monogenic ion channelopathies were compared.•Synaptic channel abnormality was identified in patients, with specificity above 89%.•DCM could serve as a platform for non-invasively assaying brain molecular dynamics.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2015.08.057</identifier><identifier>PMID: 26342528</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acoustic Stimulation ; Adult ; Aged ; Aged, 80 and over ; Auditory Cortex - physiopathology ; Auditory Perception - physiology ; Biomedical research ; Biophysical models ; Brain - physiopathology ; Brain research ; Calcium Channels - genetics ; Channelopathies ; Channelopathies - genetics ; Channelopathies - physiopathology ; Computer Simulation ; Dynamic causal modeling ; Electroencephalography ; Epilepsy ; Evoked Potentials, Auditory ; Female ; Genes ; Humans ; Ion channel signaling ; Ligands ; Magnetoencephalography ; Magnetoencephalography - methods ; Male ; Medical imaging ; Middle Aged ; Models, Neurological ; Mutation ; Neurons - physiology ; Patients ; Potassium ; Potassium Channels, Inwardly Rectifying - genetics ; Schizophrenia ; Synapses - physiology ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2016-01, Vol.124 (Pt A), p.43-53</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2016</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5fc7d43841182088d84ef8a16836740758deb10887146eee1ad214687872027b3</citedby><cites>FETCH-LOGICAL-c540t-5fc7d43841182088d84ef8a16836740758deb10887146eee1ad214687872027b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1735307076?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26342528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilbert, Jessica R.</creatorcontrib><creatorcontrib>Symmonds, Mkael</creatorcontrib><creatorcontrib>Hanna, Michael G.</creatorcontrib><creatorcontrib>Dolan, Raymond J.</creatorcontrib><creatorcontrib>Friston, Karl J.</creatorcontrib><creatorcontrib>Moran, Rosalyn J.</creatorcontrib><title>Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. •Dynamic causal modeling (DCM) for M/EEG includes ion channel parameter estimates.•Parameter estimates from patients with monogenic ion channelopathies were compared.•Synaptic channel abnormality was identified in patients, with specificity above 89%.•DCM could serve as a platform for non-invasively assaying brain molecular dynamics.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Auditory Cortex - physiopathology</subject><subject>Auditory Perception - physiology</subject><subject>Biomedical research</subject><subject>Biophysical models</subject><subject>Brain - physiopathology</subject><subject>Brain research</subject><subject>Calcium Channels - genetics</subject><subject>Channelopathies</subject><subject>Channelopathies - genetics</subject><subject>Channelopathies - physiopathology</subject><subject>Computer Simulation</subject><subject>Dynamic causal modeling</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Evoked Potentials, Auditory</subject><subject>Female</subject><subject>Genes</subject><subject>Humans</subject><subject>Ion channel signaling</subject><subject>Ligands</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Models, Neurological</subject><subject>Mutation</subject><subject>Neurons - physiology</subject><subject>Patients</subject><subject>Potassium</subject><subject>Potassium Channels, Inwardly Rectifying - genetics</subject><subject>Schizophrenia</subject><subject>Synapses - physiology</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk2P1DAMhisEYj_gL6BIXLh0iJOmSTkgwYgFpJXgAOcok7gzGbXJkLSD9hfwt0mZZfm4wMmW_Pi1Lb9VRYCugEL7fL8KOKfoR7PFFaMgVlStqJD3qnOgnag7Idn9JRe8VgDdWXWR855S2kGjHlZnrOUNE0ydV98-ptj7wYct-SEZzEB8DMTuTAg4xIOZdh4z-eqnHQkx1D4cTfZHJJtkfCDLCkuzCY64m2BGb4k1cy4yY3Q45BdkbTKSPM1u0Yk9yYUfkGwxIBnnyUxlXn5UPejNkPHxbbysPl-9-bR-V19_ePt-_eq6tqKhUy16K13DVQOgGFXKqQZ7ZaBVvJUNlUI53EApSGhaRATjWMmUVJJRJjf8snp50j3MmxGdxTAlM-hDKoekGx2N139Wgt_pbTzqphWiA1kEnt0KpPhlxjzp0WeLw2ACxjlrkAIYcMHVf6BcdLTlbFF9-he6j3MqzzhRnEoq20KpE2VTzDlhf7c3UL0YQ-_1L2PoxRiaKl2MUVqf_H73XeNPJxTg9QkoP8Ojx6Sz9RgsOp_QTtpF_-8p3wEFbtDA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Gilbert, Jessica R.</creator><creator>Symmonds, Mkael</creator><creator>Hanna, Michael G.</creator><creator>Dolan, Raymond J.</creator><creator>Friston, Karl J.</creator><creator>Moran, Rosalyn J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20160101</creationdate><title>Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations</title><author>Gilbert, Jessica R. ; Symmonds, Mkael ; Hanna, Michael G. ; Dolan, Raymond J. ; Friston, Karl J. ; Moran, Rosalyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5fc7d43841182088d84ef8a16836740758deb10887146eee1ad214687872027b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Auditory Cortex - physiopathology</topic><topic>Auditory Perception - physiology</topic><topic>Biomedical research</topic><topic>Biophysical models</topic><topic>Brain - physiopathology</topic><topic>Brain research</topic><topic>Calcium Channels - genetics</topic><topic>Channelopathies</topic><topic>Channelopathies - genetics</topic><topic>Channelopathies - physiopathology</topic><topic>Computer Simulation</topic><topic>Dynamic causal modeling</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Evoked Potentials, Auditory</topic><topic>Female</topic><topic>Genes</topic><topic>Humans</topic><topic>Ion channel signaling</topic><topic>Ligands</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Models, Neurological</topic><topic>Mutation</topic><topic>Neurons - physiology</topic><topic>Patients</topic><topic>Potassium</topic><topic>Potassium Channels, Inwardly Rectifying - genetics</topic><topic>Schizophrenia</topic><topic>Synapses - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, Jessica R.</creatorcontrib><creatorcontrib>Symmonds, Mkael</creatorcontrib><creatorcontrib>Hanna, Michael G.</creatorcontrib><creatorcontrib>Dolan, Raymond J.</creatorcontrib><creatorcontrib>Friston, Karl J.</creatorcontrib><creatorcontrib>Moran, Rosalyn J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, Jessica R.</au><au>Symmonds, Mkael</au><au>Hanna, Michael G.</au><au>Dolan, Raymond J.</au><au>Friston, Karl J.</au><au>Moran, Rosalyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>124</volume><issue>Pt A</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. •Dynamic causal modeling (DCM) for M/EEG includes ion channel parameter estimates.•Parameter estimates from patients with monogenic ion channelopathies were compared.•Synaptic channel abnormality was identified in patients, with specificity above 89%.•DCM could serve as a platform for non-invasively assaying brain molecular dynamics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26342528</pmid><doi>10.1016/j.neuroimage.2015.08.057</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2016-01, Vol.124 (Pt A), p.43-53
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4655917
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Acoustic Stimulation
Adult
Aged
Aged, 80 and over
Auditory Cortex - physiopathology
Auditory Perception - physiology
Biomedical research
Biophysical models
Brain - physiopathology
Brain research
Calcium Channels - genetics
Channelopathies
Channelopathies - genetics
Channelopathies - physiopathology
Computer Simulation
Dynamic causal modeling
Electroencephalography
Epilepsy
Evoked Potentials, Auditory
Female
Genes
Humans
Ion channel signaling
Ligands
Magnetoencephalography
Magnetoencephalography - methods
Male
Medical imaging
Middle Aged
Models, Neurological
Mutation
Neurons - physiology
Patients
Potassium
Potassium Channels, Inwardly Rectifying - genetics
Schizophrenia
Synapses - physiology
Young Adult
title Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profiling%20neuronal%20ion%20channelopathies%20with%20non-invasive%20brain%20imaging%20and%20dynamic%20causal%20models:%20Case%20studies%20of%20single%20gene%20mutations&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Gilbert,%20Jessica%20R.&rft.date=2016-01-01&rft.volume=124&rft.issue=Pt%20A&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2015.08.057&rft_dat=%3Cproquest_pubme%3E1751213538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735307076&rft_id=info:pmid/26342528&rft_els_id=S1053811915007788&rfr_iscdi=true