Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Park...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2015-11, Vol.34 (22), p.2840-2861 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2861 |
---|---|
container_issue | 22 |
container_start_page | 2840 |
container_title | The EMBO journal |
container_volume | 34 |
creator | Lai, Yu-Chiang Kondapalli, Chandana Lehneck, Ronny Procter, James B Dill, Brian D Woodroof, Helen I Gourlay, Robert Peggie, Mark Macartney, Thomas J Corti, Olga Corvol, Jean-Christophe Campbell, David G Itzen, Aymelt Trost, Matthias Muqit, Miratul MK |
description | Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser
65
) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser
111
) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser
111
of each of the Rabs, we demonstrate that Rab Ser
111
phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser
111
phosphorylation is not directly regulated by PINK1
in vitro
and demonstrate in cells the time course of Ser
111
phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser
65
. We further show mechanistically that phosphorylation at Ser
111
significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser
111
may represent novel biomarkers of PINK1 activity
in vivo
. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Synopsis
The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy.
Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases.
Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser11 |
doi_str_mv | 10.15252/embj.201591593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3888878291</sourcerecordid><originalsourceid>FETCH-LOGICAL-h5653-718b854e2443d4893ff063e8d59dae1f5388d0e61f3fe01513655599bbe7056f3</originalsourceid><addsrcrecordid>eNptUc1v0zAUtxCIlcGZG7LEiUOGHX_E4YC0VaMbK6OaCkhcLKd5adw1cbHTbvvv55IRDYRkyR_v9_X8EHpNyREVqUjfQ1OsjlJCRR4Xe4JGlEuSpCQTT9GIpJImnKr8AL0IYUUIESqjz9FBKnlGM0ZG6PusdmFTu413HbjGLnBYeIDWtktsS2g7W1kI-MoUeDKfmRDPJuDW7WCNS3fThs6DaXBn_BK6gF2FZ-eXF_QlelaZdYBXD_sh-vbpdD4-S6ZfJ-fj42lSCylYklFVKMEh5ZyVXOWsqohkoEqRlwZoJZhSJQFJK1ZBbJIyKYTI86KAjAhZsUP0sdfdbIsGykUM7M1ab7xtjL_Tzlj9d6W1tV66neZS8JyJKPCuF6j_oZ0dT_X-jdBU7S13NGLfPph592sLodMrt_Vt7E_TjEtF0oiLqDePIw2if_48Aj70gBu7hruhTon-PVK9H6keRqpPv5x8Hm6RTHpyiLx2Cf5Rhv8LRErSU2zo4HbwM_5ay4xlQv-4nGhycjW5-Dmmes7uARLRsxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746802599</pqid></control><display><type>article</type><title>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lai, Yu-Chiang ; Kondapalli, Chandana ; Lehneck, Ronny ; Procter, James B ; Dill, Brian D ; Woodroof, Helen I ; Gourlay, Robert ; Peggie, Mark ; Macartney, Thomas J ; Corti, Olga ; Corvol, Jean-Christophe ; Campbell, David G ; Itzen, Aymelt ; Trost, Matthias ; Muqit, Miratul MK</creator><creatorcontrib>Lai, Yu-Chiang ; Kondapalli, Chandana ; Lehneck, Ronny ; Procter, James B ; Dill, Brian D ; Woodroof, Helen I ; Gourlay, Robert ; Peggie, Mark ; Macartney, Thomas J ; Corti, Olga ; Corvol, Jean-Christophe ; Campbell, David G ; Itzen, Aymelt ; Trost, Matthias ; Muqit, Miratul MK</creatorcontrib><description>Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser
65
) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser
111
) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser
111
of each of the Rabs, we demonstrate that Rab Ser
111
phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser
111
phosphorylation is not directly regulated by PINK1
in vitro
and demonstrate in cells the time course of Ser
111
phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser
65
. We further show mechanistically that phosphorylation at Ser
111
significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser
111
may represent novel biomarkers of PINK1 activity
in vivo
. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Synopsis
The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy.
Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases.
Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase.
PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation
Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8.
Graphical Abstract
Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201591593</identifier><identifier>PMID: 26471730</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Amino Acid Substitution ; Biochemistry, Molecular Biology ; EMBO20 ; EMBO22 ; EMBO31 ; Enzyme Activation - genetics ; Enzymes ; Germinal Center Kinases ; HEK293 Cells ; HeLa Cells ; Humans ; Life Sciences ; Mutation ; Mutation, Missense ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; Parkinson's disease ; Parkinsonian Disorders - genetics ; Parkinsonian Disorders - metabolism ; Parkinsonian Disorders - pathology ; phosphoproteomics ; Phosphorylation ; Phosphorylation - genetics ; PINK1 ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteomics ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; Rab GTPases ; Resource</subject><ispartof>The EMBO journal, 2015-11, Vol.34 (22), p.2840-2861</ispartof><rights>The Author(s) 2015</rights><rights>2015 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2015 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2015 EMBO</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9733-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,41099,42168,45553,45554,46387,46811,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26471730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01285599$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yu-Chiang</creatorcontrib><creatorcontrib>Kondapalli, Chandana</creatorcontrib><creatorcontrib>Lehneck, Ronny</creatorcontrib><creatorcontrib>Procter, James B</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Woodroof, Helen I</creatorcontrib><creatorcontrib>Gourlay, Robert</creatorcontrib><creatorcontrib>Peggie, Mark</creatorcontrib><creatorcontrib>Macartney, Thomas J</creatorcontrib><creatorcontrib>Corti, Olga</creatorcontrib><creatorcontrib>Corvol, Jean-Christophe</creatorcontrib><creatorcontrib>Campbell, David G</creatorcontrib><creatorcontrib>Itzen, Aymelt</creatorcontrib><creatorcontrib>Trost, Matthias</creatorcontrib><creatorcontrib>Muqit, Miratul MK</creatorcontrib><title>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser
65
) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser
111
) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser
111
of each of the Rabs, we demonstrate that Rab Ser
111
phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser
111
phosphorylation is not directly regulated by PINK1
in vitro
and demonstrate in cells the time course of Ser
111
phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser
65
. We further show mechanistically that phosphorylation at Ser
111
significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser
111
may represent novel biomarkers of PINK1 activity
in vivo
. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Synopsis
The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy.
Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases.
Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase.
PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation
Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8.
Graphical Abstract
Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.</description><subject>Amino Acid Substitution</subject><subject>Biochemistry, Molecular Biology</subject><subject>EMBO20</subject><subject>EMBO22</subject><subject>EMBO31</subject><subject>Enzyme Activation - genetics</subject><subject>Enzymes</subject><subject>Germinal Center Kinases</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - genetics</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Parkinsonian Disorders - pathology</subject><subject>phosphoproteomics</subject><subject>Phosphorylation</subject><subject>Phosphorylation - genetics</subject><subject>PINK1</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteomics</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Rab GTPases</subject><subject>Resource</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNptUc1v0zAUtxCIlcGZG7LEiUOGHX_E4YC0VaMbK6OaCkhcLKd5adw1cbHTbvvv55IRDYRkyR_v9_X8EHpNyREVqUjfQ1OsjlJCRR4Xe4JGlEuSpCQTT9GIpJImnKr8AL0IYUUIESqjz9FBKnlGM0ZG6PusdmFTu413HbjGLnBYeIDWtktsS2g7W1kI-MoUeDKfmRDPJuDW7WCNS3fThs6DaXBn_BK6gF2FZ-eXF_QlelaZdYBXD_sh-vbpdD4-S6ZfJ-fj42lSCylYklFVKMEh5ZyVXOWsqohkoEqRlwZoJZhSJQFJK1ZBbJIyKYTI86KAjAhZsUP0sdfdbIsGykUM7M1ab7xtjL_Tzlj9d6W1tV66neZS8JyJKPCuF6j_oZ0dT_X-jdBU7S13NGLfPph592sLodMrt_Vt7E_TjEtF0oiLqDePIw2if_48Aj70gBu7hruhTon-PVK9H6keRqpPv5x8Hm6RTHpyiLx2Cf5Rhv8LRErSU2zo4HbwM_5ay4xlQv-4nGhycjW5-Dmmes7uARLRsxY</recordid><startdate>20151112</startdate><enddate>20151112</enddate><creator>Lai, Yu-Chiang</creator><creator>Kondapalli, Chandana</creator><creator>Lehneck, Ronny</creator><creator>Procter, James B</creator><creator>Dill, Brian D</creator><creator>Woodroof, Helen I</creator><creator>Gourlay, Robert</creator><creator>Peggie, Mark</creator><creator>Macartney, Thomas J</creator><creator>Corti, Olga</creator><creator>Corvol, Jean-Christophe</creator><creator>Campbell, David G</creator><creator>Itzen, Aymelt</creator><creator>Trost, Matthias</creator><creator>Muqit, Miratul MK</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9733-2404</orcidid></search><sort><creationdate>20151112</creationdate><title>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</title><author>Lai, Yu-Chiang ; Kondapalli, Chandana ; Lehneck, Ronny ; Procter, James B ; Dill, Brian D ; Woodroof, Helen I ; Gourlay, Robert ; Peggie, Mark ; Macartney, Thomas J ; Corti, Olga ; Corvol, Jean-Christophe ; Campbell, David G ; Itzen, Aymelt ; Trost, Matthias ; Muqit, Miratul MK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h5653-718b854e2443d4893ff063e8d59dae1f5388d0e61f3fe01513655599bbe7056f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Substitution</topic><topic>Biochemistry, Molecular Biology</topic><topic>EMBO20</topic><topic>EMBO22</topic><topic>EMBO31</topic><topic>Enzyme Activation - genetics</topic><topic>Enzymes</topic><topic>Germinal Center Kinases</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - genetics</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Parkinsonian Disorders - pathology</topic><topic>phosphoproteomics</topic><topic>Phosphorylation</topic><topic>Phosphorylation - genetics</topic><topic>PINK1</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteomics</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Rab GTPases</topic><topic>Resource</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yu-Chiang</creatorcontrib><creatorcontrib>Kondapalli, Chandana</creatorcontrib><creatorcontrib>Lehneck, Ronny</creatorcontrib><creatorcontrib>Procter, James B</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Woodroof, Helen I</creatorcontrib><creatorcontrib>Gourlay, Robert</creatorcontrib><creatorcontrib>Peggie, Mark</creatorcontrib><creatorcontrib>Macartney, Thomas J</creatorcontrib><creatorcontrib>Corti, Olga</creatorcontrib><creatorcontrib>Corvol, Jean-Christophe</creatorcontrib><creatorcontrib>Campbell, David G</creatorcontrib><creatorcontrib>Itzen, Aymelt</creatorcontrib><creatorcontrib>Trost, Matthias</creatorcontrib><creatorcontrib>Muqit, Miratul MK</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Yu-Chiang</au><au>Kondapalli, Chandana</au><au>Lehneck, Ronny</au><au>Procter, James B</au><au>Dill, Brian D</au><au>Woodroof, Helen I</au><au>Gourlay, Robert</au><au>Peggie, Mark</au><au>Macartney, Thomas J</au><au>Corti, Olga</au><au>Corvol, Jean-Christophe</au><au>Campbell, David G</au><au>Itzen, Aymelt</au><au>Trost, Matthias</au><au>Muqit, Miratul MK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-11-12</date><risdate>2015</risdate><volume>34</volume><issue>22</issue><spage>2840</spage><epage>2861</epage><pages>2840-2861</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser
65
) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser
111
) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser
111
of each of the Rabs, we demonstrate that Rab Ser
111
phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser
111
phosphorylation is not directly regulated by PINK1
in vitro
and demonstrate in cells the time course of Ser
111
phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser
65
. We further show mechanistically that phosphorylation at Ser
111
significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser
111
may represent novel biomarkers of PINK1 activity
in vivo
. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Synopsis
The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy.
Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases.
Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase.
PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation
Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8.
Graphical Abstract
Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>26471730</pmid><doi>10.15252/embj.201591593</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9733-2404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2015-11, Vol.34 (22), p.2840-2861 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654935 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Wiley Free Content; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Biochemistry, Molecular Biology EMBO20 EMBO22 EMBO31 Enzyme Activation - genetics Enzymes Germinal Center Kinases HEK293 Cells HeLa Cells Humans Life Sciences Mutation Mutation, Missense Oncogene Proteins - genetics Oncogene Proteins - metabolism Parkinson's disease Parkinsonian Disorders - genetics Parkinsonian Disorders - metabolism Parkinsonian Disorders - pathology phosphoproteomics Phosphorylation Phosphorylation - genetics PINK1 Protein Kinases - genetics Protein Kinases - metabolism Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteomics rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - metabolism Rab GTPases Resource |
title | Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphoproteomic%20screening%20identifies%20Rab%20GTPases%20as%20novel%20downstream%20targets%20of%20PINK1&rft.jtitle=The%20EMBO%20journal&rft.au=Lai,%20Yu-Chiang&rft.date=2015-11-12&rft.volume=34&rft.issue=22&rft.spage=2840&rft.epage=2861&rft.pages=2840-2861&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201591593&rft_dat=%3Cproquest_pubme%3E3888878291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746802599&rft_id=info:pmid/26471730&rfr_iscdi=true |