Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Park...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2015-11, Vol.34 (22), p.2840-2861
Hauptverfasser: Lai, Yu-Chiang, Kondapalli, Chandana, Lehneck, Ronny, Procter, James B, Dill, Brian D, Woodroof, Helen I, Gourlay, Robert, Peggie, Mark, Macartney, Thomas J, Corti, Olga, Corvol, Jean-Christophe, Campbell, David G, Itzen, Aymelt, Trost, Matthias, Muqit, Miratul MK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2861
container_issue 22
container_start_page 2840
container_title The EMBO journal
container_volume 34
creator Lai, Yu-Chiang
Kondapalli, Chandana
Lehneck, Ronny
Procter, James B
Dill, Brian D
Woodroof, Helen I
Gourlay, Robert
Peggie, Mark
Macartney, Thomas J
Corti, Olga
Corvol, Jean-Christophe
Campbell, David G
Itzen, Aymelt
Trost, Matthias
Muqit, Miratul MK
description Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo . Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser11
doi_str_mv 10.15252/embj.201591593
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3888878291</sourcerecordid><originalsourceid>FETCH-LOGICAL-h5653-718b854e2443d4893ff063e8d59dae1f5388d0e61f3fe01513655599bbe7056f3</originalsourceid><addsrcrecordid>eNptUc1v0zAUtxCIlcGZG7LEiUOGHX_E4YC0VaMbK6OaCkhcLKd5adw1cbHTbvvv55IRDYRkyR_v9_X8EHpNyREVqUjfQ1OsjlJCRR4Xe4JGlEuSpCQTT9GIpJImnKr8AL0IYUUIESqjz9FBKnlGM0ZG6PusdmFTu413HbjGLnBYeIDWtktsS2g7W1kI-MoUeDKfmRDPJuDW7WCNS3fThs6DaXBn_BK6gF2FZ-eXF_QlelaZdYBXD_sh-vbpdD4-S6ZfJ-fj42lSCylYklFVKMEh5ZyVXOWsqohkoEqRlwZoJZhSJQFJK1ZBbJIyKYTI86KAjAhZsUP0sdfdbIsGykUM7M1ab7xtjL_Tzlj9d6W1tV66neZS8JyJKPCuF6j_oZ0dT_X-jdBU7S13NGLfPph592sLodMrt_Vt7E_TjEtF0oiLqDePIw2if_48Aj70gBu7hruhTon-PVK9H6keRqpPv5x8Hm6RTHpyiLx2Cf5Rhv8LRErSU2zo4HbwM_5ay4xlQv-4nGhycjW5-Dmmes7uARLRsxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746802599</pqid></control><display><type>article</type><title>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lai, Yu-Chiang ; Kondapalli, Chandana ; Lehneck, Ronny ; Procter, James B ; Dill, Brian D ; Woodroof, Helen I ; Gourlay, Robert ; Peggie, Mark ; Macartney, Thomas J ; Corti, Olga ; Corvol, Jean-Christophe ; Campbell, David G ; Itzen, Aymelt ; Trost, Matthias ; Muqit, Miratul MK</creator><creatorcontrib>Lai, Yu-Chiang ; Kondapalli, Chandana ; Lehneck, Ronny ; Procter, James B ; Dill, Brian D ; Woodroof, Helen I ; Gourlay, Robert ; Peggie, Mark ; Macartney, Thomas J ; Corti, Olga ; Corvol, Jean-Christophe ; Campbell, David G ; Itzen, Aymelt ; Trost, Matthias ; Muqit, Miratul MK</creatorcontrib><description>Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo . Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase. PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8. Graphical Abstract Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201591593</identifier><identifier>PMID: 26471730</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Amino Acid Substitution ; Biochemistry, Molecular Biology ; EMBO20 ; EMBO22 ; EMBO31 ; Enzyme Activation - genetics ; Enzymes ; Germinal Center Kinases ; HEK293 Cells ; HeLa Cells ; Humans ; Life Sciences ; Mutation ; Mutation, Missense ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; Parkinson's disease ; Parkinsonian Disorders - genetics ; Parkinsonian Disorders - metabolism ; Parkinsonian Disorders - pathology ; phosphoproteomics ; Phosphorylation ; Phosphorylation - genetics ; PINK1 ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteomics ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; Rab GTPases ; Resource</subject><ispartof>The EMBO journal, 2015-11, Vol.34 (22), p.2840-2861</ispartof><rights>The Author(s) 2015</rights><rights>2015 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2015 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2015 EMBO</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9733-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,41099,42168,45553,45554,46387,46811,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26471730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01285599$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yu-Chiang</creatorcontrib><creatorcontrib>Kondapalli, Chandana</creatorcontrib><creatorcontrib>Lehneck, Ronny</creatorcontrib><creatorcontrib>Procter, James B</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Woodroof, Helen I</creatorcontrib><creatorcontrib>Gourlay, Robert</creatorcontrib><creatorcontrib>Peggie, Mark</creatorcontrib><creatorcontrib>Macartney, Thomas J</creatorcontrib><creatorcontrib>Corti, Olga</creatorcontrib><creatorcontrib>Corvol, Jean-Christophe</creatorcontrib><creatorcontrib>Campbell, David G</creatorcontrib><creatorcontrib>Itzen, Aymelt</creatorcontrib><creatorcontrib>Trost, Matthias</creatorcontrib><creatorcontrib>Muqit, Miratul MK</creatorcontrib><title>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo . Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase. PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8. Graphical Abstract Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.</description><subject>Amino Acid Substitution</subject><subject>Biochemistry, Molecular Biology</subject><subject>EMBO20</subject><subject>EMBO22</subject><subject>EMBO31</subject><subject>Enzyme Activation - genetics</subject><subject>Enzymes</subject><subject>Germinal Center Kinases</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - genetics</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Parkinsonian Disorders - pathology</subject><subject>phosphoproteomics</subject><subject>Phosphorylation</subject><subject>Phosphorylation - genetics</subject><subject>PINK1</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteomics</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Rab GTPases</subject><subject>Resource</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNptUc1v0zAUtxCIlcGZG7LEiUOGHX_E4YC0VaMbK6OaCkhcLKd5adw1cbHTbvvv55IRDYRkyR_v9_X8EHpNyREVqUjfQ1OsjlJCRR4Xe4JGlEuSpCQTT9GIpJImnKr8AL0IYUUIESqjz9FBKnlGM0ZG6PusdmFTu413HbjGLnBYeIDWtktsS2g7W1kI-MoUeDKfmRDPJuDW7WCNS3fThs6DaXBn_BK6gF2FZ-eXF_QlelaZdYBXD_sh-vbpdD4-S6ZfJ-fj42lSCylYklFVKMEh5ZyVXOWsqohkoEqRlwZoJZhSJQFJK1ZBbJIyKYTI86KAjAhZsUP0sdfdbIsGykUM7M1ab7xtjL_Tzlj9d6W1tV66neZS8JyJKPCuF6j_oZ0dT_X-jdBU7S13NGLfPph592sLodMrt_Vt7E_TjEtF0oiLqDePIw2if_48Aj70gBu7hruhTon-PVK9H6keRqpPv5x8Hm6RTHpyiLx2Cf5Rhv8LRErSU2zo4HbwM_5ay4xlQv-4nGhycjW5-Dmmes7uARLRsxY</recordid><startdate>20151112</startdate><enddate>20151112</enddate><creator>Lai, Yu-Chiang</creator><creator>Kondapalli, Chandana</creator><creator>Lehneck, Ronny</creator><creator>Procter, James B</creator><creator>Dill, Brian D</creator><creator>Woodroof, Helen I</creator><creator>Gourlay, Robert</creator><creator>Peggie, Mark</creator><creator>Macartney, Thomas J</creator><creator>Corti, Olga</creator><creator>Corvol, Jean-Christophe</creator><creator>Campbell, David G</creator><creator>Itzen, Aymelt</creator><creator>Trost, Matthias</creator><creator>Muqit, Miratul MK</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9733-2404</orcidid></search><sort><creationdate>20151112</creationdate><title>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</title><author>Lai, Yu-Chiang ; Kondapalli, Chandana ; Lehneck, Ronny ; Procter, James B ; Dill, Brian D ; Woodroof, Helen I ; Gourlay, Robert ; Peggie, Mark ; Macartney, Thomas J ; Corti, Olga ; Corvol, Jean-Christophe ; Campbell, David G ; Itzen, Aymelt ; Trost, Matthias ; Muqit, Miratul MK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h5653-718b854e2443d4893ff063e8d59dae1f5388d0e61f3fe01513655599bbe7056f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Substitution</topic><topic>Biochemistry, Molecular Biology</topic><topic>EMBO20</topic><topic>EMBO22</topic><topic>EMBO31</topic><topic>Enzyme Activation - genetics</topic><topic>Enzymes</topic><topic>Germinal Center Kinases</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - genetics</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Parkinsonian Disorders - pathology</topic><topic>phosphoproteomics</topic><topic>Phosphorylation</topic><topic>Phosphorylation - genetics</topic><topic>PINK1</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteomics</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Rab GTPases</topic><topic>Resource</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yu-Chiang</creatorcontrib><creatorcontrib>Kondapalli, Chandana</creatorcontrib><creatorcontrib>Lehneck, Ronny</creatorcontrib><creatorcontrib>Procter, James B</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Woodroof, Helen I</creatorcontrib><creatorcontrib>Gourlay, Robert</creatorcontrib><creatorcontrib>Peggie, Mark</creatorcontrib><creatorcontrib>Macartney, Thomas J</creatorcontrib><creatorcontrib>Corti, Olga</creatorcontrib><creatorcontrib>Corvol, Jean-Christophe</creatorcontrib><creatorcontrib>Campbell, David G</creatorcontrib><creatorcontrib>Itzen, Aymelt</creatorcontrib><creatorcontrib>Trost, Matthias</creatorcontrib><creatorcontrib>Muqit, Miratul MK</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Yu-Chiang</au><au>Kondapalli, Chandana</au><au>Lehneck, Ronny</au><au>Procter, James B</au><au>Dill, Brian D</au><au>Woodroof, Helen I</au><au>Gourlay, Robert</au><au>Peggie, Mark</au><au>Macartney, Thomas J</au><au>Corti, Olga</au><au>Corvol, Jean-Christophe</au><au>Campbell, David G</au><au>Itzen, Aymelt</au><au>Trost, Matthias</au><au>Muqit, Miratul MK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-11-12</date><risdate>2015</risdate><volume>34</volume><issue>22</issue><spage>2840</spage><epage>2861</epage><pages>2840-2861</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo . Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase. PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8. Graphical Abstract Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>26471730</pmid><doi>10.15252/embj.201591593</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9733-2404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2015-11, Vol.34 (22), p.2840-2861
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654935
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Wiley Free Content; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Biochemistry, Molecular Biology
EMBO20
EMBO22
EMBO31
Enzyme Activation - genetics
Enzymes
Germinal Center Kinases
HEK293 Cells
HeLa Cells
Humans
Life Sciences
Mutation
Mutation, Missense
Oncogene Proteins - genetics
Oncogene Proteins - metabolism
Parkinson's disease
Parkinsonian Disorders - genetics
Parkinsonian Disorders - metabolism
Parkinsonian Disorders - pathology
phosphoproteomics
Phosphorylation
Phosphorylation - genetics
PINK1
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteomics
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
Rab GTPases
Resource
title Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphoproteomic%20screening%20identifies%20Rab%20GTPases%20as%20novel%20downstream%20targets%20of%20PINK1&rft.jtitle=The%20EMBO%20journal&rft.au=Lai,%20Yu-Chiang&rft.date=2015-11-12&rft.volume=34&rft.issue=22&rft.spage=2840&rft.epage=2861&rft.pages=2840-2861&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201591593&rft_dat=%3Cproquest_pubme%3E3888878291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746802599&rft_id=info:pmid/26471730&rfr_iscdi=true