Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration

The flow focusing is a fundamental prior step in order to sort, analyze, and detect particles or cells. The standard hydrodynamic approach requires two fluids to be injected into the microfluidic device: one containing the sample and the other one, called the sheath fluid, allows squeezing the sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2015-11, Vol.9 (6), p.064107-064107
Hauptverfasser: Torino, S, Iodice, M, Rendina, I, Coppola, G, Schonbrun, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064107
container_issue 6
container_start_page 064107
container_title Biomicrofluidics
container_volume 9
creator Torino, S
Iodice, M
Rendina, I
Coppola, G
Schonbrun, E
description The flow focusing is a fundamental prior step in order to sort, analyze, and detect particles or cells. The standard hydrodynamic approach requires two fluids to be injected into the microfluidic device: one containing the sample and the other one, called the sheath fluid, allows squeezing the sample fluid into a narrow stream. The major drawback of this approach is the high complexity of the layout for microfluidic devices when parallel streams are required. In this work, we present a novel parallelized microfluidic device that enables hydrodynamic focusing in each microchannel using a single feed flow. At each of the parallel channels, a cross-filter region is present that allows removing fluid from the sample fluid. This fluid is used to create local sheath fluids that hydrodynamically pinch the sample fluid. The great advantage of the proposed device is that, since only one inlet is needed, multiple parallel micro-channels can be easily introduced into the design. In the paper, the design method is described and the numerical simulations performed to define the optimal design are summarized. Moreover, the operational functionality of devices tested by using both polystyrene beads and Acute Lymphoid Leukemia cells are shown.
doi_str_mv 10.1063/1.4936260
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1749599306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e0e662cc9e59a696549e8e0d375059d75e90adeb9aa4c230b1e5bd97282f8b323</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoPkYX_gEpuNFFNY8mbTaCiC8YcKPrkCa3M5FMMybtwPx7o46irm7gfJx7bg5CxwRfECzYJbmoJBNU4C20TySjJcG82f713kMHKb1izElN6S7ao0KwChO-j14e1jYGu-71wpkige_KLpgxuX5WuL7QxVJH7T34IusxdH50NoMWVs5AMcxjGGfzIisplZ3zQ9SDC_0h2um0T3C0mRP0cnf7fPNQTp_uH2-up6WpMBtKwCAENUYCl1pIwSsJDWDLao65tDUHibWFVmpdGcpwS4C3Vta0oV3TMsom6OrLdzm2C7AG-hzAq2V0Cx3XKmin_iq9m6tZWKkq76qZyAZnG4MY3kZIg1q4ZMB73UMYkyJ1JbmUDH-gp__Q1zDGPp-nKKGsyX6fhudf1OeXROh-whCsPspSRG3KyuzJ7_Q_5Hc77B1S9I_l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123847336</pqid></control><display><type>article</type><title>Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration</title><source>AIP Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Torino, S ; Iodice, M ; Rendina, I ; Coppola, G ; Schonbrun, E</creator><creatorcontrib>Torino, S ; Iodice, M ; Rendina, I ; Coppola, G ; Schonbrun, E</creatorcontrib><description>The flow focusing is a fundamental prior step in order to sort, analyze, and detect particles or cells. The standard hydrodynamic approach requires two fluids to be injected into the microfluidic device: one containing the sample and the other one, called the sheath fluid, allows squeezing the sample fluid into a narrow stream. The major drawback of this approach is the high complexity of the layout for microfluidic devices when parallel streams are required. In this work, we present a novel parallelized microfluidic device that enables hydrodynamic focusing in each microchannel using a single feed flow. At each of the parallel channels, a cross-filter region is present that allows removing fluid from the sample fluid. This fluid is used to create local sheath fluids that hydrodynamically pinch the sample fluid. The great advantage of the proposed device is that, since only one inlet is needed, multiple parallel micro-channels can be easily introduced into the design. In the paper, the design method is described and the numerical simulations performed to define the optimal design are summarized. Moreover, the operational functionality of devices tested by using both polystyrene beads and Acute Lymphoid Leukemia cells are shown.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4936260</identifier><identifier>PMID: 26634015</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Beads ; Computational fluid dynamics ; Computer simulation ; Fluids ; Microchannels ; Polystyrene resins ; Regular ; Sheaths</subject><ispartof>Biomicrofluidics, 2015-11, Vol.9 (6), p.064107-064107</ispartof><rights>2015 AIP Publishing LLC.</rights><rights>Copyright © 2015 AIP Publishing LLC 2015 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e0e662cc9e59a696549e8e0d375059d75e90adeb9aa4c230b1e5bd97282f8b323</citedby><cites>FETCH-LOGICAL-c403t-e0e662cc9e59a696549e8e0d375059d75e90adeb9aa4c230b1e5bd97282f8b323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654736/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654736/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26634015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torino, S</creatorcontrib><creatorcontrib>Iodice, M</creatorcontrib><creatorcontrib>Rendina, I</creatorcontrib><creatorcontrib>Coppola, G</creatorcontrib><creatorcontrib>Schonbrun, E</creatorcontrib><title>Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>The flow focusing is a fundamental prior step in order to sort, analyze, and detect particles or cells. The standard hydrodynamic approach requires two fluids to be injected into the microfluidic device: one containing the sample and the other one, called the sheath fluid, allows squeezing the sample fluid into a narrow stream. The major drawback of this approach is the high complexity of the layout for microfluidic devices when parallel streams are required. In this work, we present a novel parallelized microfluidic device that enables hydrodynamic focusing in each microchannel using a single feed flow. At each of the parallel channels, a cross-filter region is present that allows removing fluid from the sample fluid. This fluid is used to create local sheath fluids that hydrodynamically pinch the sample fluid. The great advantage of the proposed device is that, since only one inlet is needed, multiple parallel micro-channels can be easily introduced into the design. In the paper, the design method is described and the numerical simulations performed to define the optimal design are summarized. Moreover, the operational functionality of devices tested by using both polystyrene beads and Acute Lymphoid Leukemia cells are shown.</description><subject>Beads</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluids</subject><subject>Microchannels</subject><subject>Polystyrene resins</subject><subject>Regular</subject><subject>Sheaths</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxDAUhYMoPkYX_gEpuNFFNY8mbTaCiC8YcKPrkCa3M5FMMybtwPx7o46irm7gfJx7bg5CxwRfECzYJbmoJBNU4C20TySjJcG82f713kMHKb1izElN6S7ao0KwChO-j14e1jYGu-71wpkige_KLpgxuX5WuL7QxVJH7T34IusxdH50NoMWVs5AMcxjGGfzIisplZ3zQ9SDC_0h2um0T3C0mRP0cnf7fPNQTp_uH2-up6WpMBtKwCAENUYCl1pIwSsJDWDLao65tDUHibWFVmpdGcpwS4C3Vta0oV3TMsom6OrLdzm2C7AG-hzAq2V0Cx3XKmin_iq9m6tZWKkq76qZyAZnG4MY3kZIg1q4ZMB73UMYkyJ1JbmUDH-gp__Q1zDGPp-nKKGsyX6fhudf1OeXROh-whCsPspSRG3KyuzJ7_Q_5Hc77B1S9I_l</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Torino, S</creator><creator>Iodice, M</creator><creator>Rendina, I</creator><creator>Coppola, G</creator><creator>Schonbrun, E</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151101</creationdate><title>Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration</title><author>Torino, S ; Iodice, M ; Rendina, I ; Coppola, G ; Schonbrun, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e0e662cc9e59a696549e8e0d375059d75e90adeb9aa4c230b1e5bd97282f8b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Beads</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluids</topic><topic>Microchannels</topic><topic>Polystyrene resins</topic><topic>Regular</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torino, S</creatorcontrib><creatorcontrib>Iodice, M</creatorcontrib><creatorcontrib>Rendina, I</creatorcontrib><creatorcontrib>Coppola, G</creatorcontrib><creatorcontrib>Schonbrun, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torino, S</au><au>Iodice, M</au><au>Rendina, I</au><au>Coppola, G</au><au>Schonbrun, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>9</volume><issue>6</issue><spage>064107</spage><epage>064107</epage><pages>064107-064107</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><abstract>The flow focusing is a fundamental prior step in order to sort, analyze, and detect particles or cells. The standard hydrodynamic approach requires two fluids to be injected into the microfluidic device: one containing the sample and the other one, called the sheath fluid, allows squeezing the sample fluid into a narrow stream. The major drawback of this approach is the high complexity of the layout for microfluidic devices when parallel streams are required. In this work, we present a novel parallelized microfluidic device that enables hydrodynamic focusing in each microchannel using a single feed flow. At each of the parallel channels, a cross-filter region is present that allows removing fluid from the sample fluid. This fluid is used to create local sheath fluids that hydrodynamically pinch the sample fluid. The great advantage of the proposed device is that, since only one inlet is needed, multiple parallel micro-channels can be easily introduced into the design. In the paper, the design method is described and the numerical simulations performed to define the optimal design are summarized. Moreover, the operational functionality of devices tested by using both polystyrene beads and Acute Lymphoid Leukemia cells are shown.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26634015</pmid><doi>10.1063/1.4936260</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2015-11, Vol.9 (6), p.064107-064107
issn 1932-1058
1932-1058
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654736
source AIP Journals Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Beads
Computational fluid dynamics
Computer simulation
Fluids
Microchannels
Polystyrene resins
Regular
Sheaths
title Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20self-focusing%20in%20a%20parallel%20microfluidic%20device%20through%20cross-filtration&rft.jtitle=Biomicrofluidics&rft.au=Torino,%20S&rft.date=2015-11-01&rft.volume=9&rft.issue=6&rft.spage=064107&rft.epage=064107&rft.pages=064107-064107&rft.issn=1932-1058&rft.eissn=1932-1058&rft_id=info:doi/10.1063/1.4936260&rft_dat=%3Cproquest_pubme%3E1749599306%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123847336&rft_id=info:pmid/26634015&rfr_iscdi=true