Use of the HPRT gene to study nuclease-induced DNA double-strand break repair
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated int...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2015-12, Vol.24 (24), p.7097-7110 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7110 |
---|---|
container_issue | 24 |
container_start_page | 7097 |
container_title | Human molecular genetics |
container_volume | 24 |
creator | Gravells, Polly Ahrabi, Sara Vangala, Rajani K Tomita, Kazunori Brash, James T Brustle, Lena A Chung, Christopher Hong, Julia M Kaloudi, Aikaterini Humphrey, Timothy C Porter, Andrew C G |
description | Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene. |
doi_str_mv | 10.1093/hmg/ddv409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790966532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhoMotlZvfADJpQiryeawzY1Q6qFCPSDtdcgms-3qHmqyW-jbu9Ja9Gpg5uOfnw-hc0quKVHsZlkubpxbc6IOUJ9ySaKYDNkh6hMleSQVkT10EsIHIVRylhyjXix5zLhQffQ8D4DrDDdLwJO39xleQAW4qXFoWrfBVWsLMAGivHKtBYfvXkbY1W1aQBQabyqHUw_mE3tYmdyfoqPMFAHOdnOA5g_3s_Ekmr4-Po1H08iyRDRRLBkbWkkSITIlhIpdmg25U9akmRSMcmNVDIwamxLGbSqYUZZmVjpmul3KBuh2m7tq0xKcharrUuiVz0vjN7o2uf5_qfKlXtRrzaXgRJIu4HIX4OuvFkKjyzxYKApTQd0GTRPVyeu6xB16tUWtr0PwkO3fUKJ__OvOv9767-CLv8X26K9w9g3MZ4K5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790966532</pqid></control><display><type>article</type><title>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gravells, Polly ; Ahrabi, Sara ; Vangala, Rajani K ; Tomita, Kazunori ; Brash, James T ; Brustle, Lena A ; Chung, Christopher ; Hong, Julia M ; Kaloudi, Aikaterini ; Humphrey, Timothy C ; Porter, Andrew C G</creator><creatorcontrib>Gravells, Polly ; Ahrabi, Sara ; Vangala, Rajani K ; Tomita, Kazunori ; Brash, James T ; Brustle, Lena A ; Chung, Christopher ; Hong, Julia M ; Kaloudi, Aikaterini ; Humphrey, Timothy C ; Porter, Andrew C G</creatorcontrib><description>Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddv409</identifier><identifier>PMID: 26423459</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Bacterial Proteins - metabolism ; Cell Cycle ; Cell Line, Tumor ; CRISPR-Cas Systems ; Deoxyribonucleases, Type II Site-Specific - metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; Endonucleases - metabolism ; Genes, Reporter ; HeLa Cells ; Humans ; Hypoxanthine Phosphoribosyltransferase - genetics ; Mice ; Mutagenesis ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Human molecular genetics, 2015-12, Vol.24 (24), p.7097-7110</ispartof><rights>The Author 2015. Published by Oxford University Press.</rights><rights>The Author 2015. Published by Oxford University Press 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</citedby><cites>FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26423459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravells, Polly</creatorcontrib><creatorcontrib>Ahrabi, Sara</creatorcontrib><creatorcontrib>Vangala, Rajani K</creatorcontrib><creatorcontrib>Tomita, Kazunori</creatorcontrib><creatorcontrib>Brash, James T</creatorcontrib><creatorcontrib>Brustle, Lena A</creatorcontrib><creatorcontrib>Chung, Christopher</creatorcontrib><creatorcontrib>Hong, Julia M</creatorcontrib><creatorcontrib>Kaloudi, Aikaterini</creatorcontrib><creatorcontrib>Humphrey, Timothy C</creatorcontrib><creatorcontrib>Porter, Andrew C G</creatorcontrib><title>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.</description><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Cycle</subject><subject>Cell Line, Tumor</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleases, Type II Site-Specific - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>Endonucleases - metabolism</subject><subject>Genes, Reporter</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hypoxanthine Phosphoribosyltransferase - genetics</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkNtKAzEQhoMotlZvfADJpQiryeawzY1Q6qFCPSDtdcgms-3qHmqyW-jbu9Ja9Gpg5uOfnw-hc0quKVHsZlkubpxbc6IOUJ9ySaKYDNkh6hMleSQVkT10EsIHIVRylhyjXix5zLhQffQ8D4DrDDdLwJO39xleQAW4qXFoWrfBVWsLMAGivHKtBYfvXkbY1W1aQBQabyqHUw_mE3tYmdyfoqPMFAHOdnOA5g_3s_Ekmr4-Po1H08iyRDRRLBkbWkkSITIlhIpdmg25U9akmRSMcmNVDIwamxLGbSqYUZZmVjpmul3KBuh2m7tq0xKcharrUuiVz0vjN7o2uf5_qfKlXtRrzaXgRJIu4HIX4OuvFkKjyzxYKApTQd0GTRPVyeu6xB16tUWtr0PwkO3fUKJ__OvOv9767-CLv8X26K9w9g3MZ4K5</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Gravells, Polly</creator><creator>Ahrabi, Sara</creator><creator>Vangala, Rajani K</creator><creator>Tomita, Kazunori</creator><creator>Brash, James T</creator><creator>Brustle, Lena A</creator><creator>Chung, Christopher</creator><creator>Hong, Julia M</creator><creator>Kaloudi, Aikaterini</creator><creator>Humphrey, Timothy C</creator><creator>Porter, Andrew C G</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20151215</creationdate><title>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</title><author>Gravells, Polly ; Ahrabi, Sara ; Vangala, Rajani K ; Tomita, Kazunori ; Brash, James T ; Brustle, Lena A ; Chung, Christopher ; Hong, Julia M ; Kaloudi, Aikaterini ; Humphrey, Timothy C ; Porter, Andrew C G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Cycle</topic><topic>Cell Line, Tumor</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleases, Type II Site-Specific - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>Endonucleases - metabolism</topic><topic>Genes, Reporter</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hypoxanthine Phosphoribosyltransferase - genetics</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravells, Polly</creatorcontrib><creatorcontrib>Ahrabi, Sara</creatorcontrib><creatorcontrib>Vangala, Rajani K</creatorcontrib><creatorcontrib>Tomita, Kazunori</creatorcontrib><creatorcontrib>Brash, James T</creatorcontrib><creatorcontrib>Brustle, Lena A</creatorcontrib><creatorcontrib>Chung, Christopher</creatorcontrib><creatorcontrib>Hong, Julia M</creatorcontrib><creatorcontrib>Kaloudi, Aikaterini</creatorcontrib><creatorcontrib>Humphrey, Timothy C</creatorcontrib><creatorcontrib>Porter, Andrew C G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravells, Polly</au><au>Ahrabi, Sara</au><au>Vangala, Rajani K</au><au>Tomita, Kazunori</au><au>Brash, James T</au><au>Brustle, Lena A</au><au>Chung, Christopher</au><au>Hong, Julia M</au><au>Kaloudi, Aikaterini</au><au>Humphrey, Timothy C</au><au>Porter, Andrew C G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>24</volume><issue>24</issue><spage>7097</spage><epage>7110</epage><pages>7097-7110</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26423459</pmid><doi>10.1093/hmg/ddv409</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2015-12, Vol.24 (24), p.7097-7110 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654060 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Bacterial Proteins - metabolism Cell Cycle Cell Line, Tumor CRISPR-Cas Systems Deoxyribonucleases, Type II Site-Specific - metabolism DNA Breaks, Double-Stranded DNA Repair Endonucleases - metabolism Genes, Reporter HeLa Cells Humans Hypoxanthine Phosphoribosyltransferase - genetics Mice Mutagenesis Saccharomyces cerevisiae Proteins - metabolism |
title | Use of the HPRT gene to study nuclease-induced DNA double-strand break repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20HPRT%20gene%20to%20study%20nuclease-induced%20DNA%20double-strand%20break%20repair&rft.jtitle=Human%20molecular%20genetics&rft.au=Gravells,%20Polly&rft.date=2015-12-15&rft.volume=24&rft.issue=24&rft.spage=7097&rft.epage=7110&rft.pages=7097-7110&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddv409&rft_dat=%3Cproquest_pubme%3E1790966532%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790966532&rft_id=info:pmid/26423459&rfr_iscdi=true |