Use of the HPRT gene to study nuclease-induced DNA double-strand break repair

Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2015-12, Vol.24 (24), p.7097-7110
Hauptverfasser: Gravells, Polly, Ahrabi, Sara, Vangala, Rajani K, Tomita, Kazunori, Brash, James T, Brustle, Lena A, Chung, Christopher, Hong, Julia M, Kaloudi, Aikaterini, Humphrey, Timothy C, Porter, Andrew C G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7110
container_issue 24
container_start_page 7097
container_title Human molecular genetics
container_volume 24
creator Gravells, Polly
Ahrabi, Sara
Vangala, Rajani K
Tomita, Kazunori
Brash, James T
Brustle, Lena A
Chung, Christopher
Hong, Julia M
Kaloudi, Aikaterini
Humphrey, Timothy C
Porter, Andrew C G
description Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
doi_str_mv 10.1093/hmg/ddv409
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790966532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhoMotlZvfADJpQiryeawzY1Q6qFCPSDtdcgms-3qHmqyW-jbu9Ja9Gpg5uOfnw-hc0quKVHsZlkubpxbc6IOUJ9ySaKYDNkh6hMleSQVkT10EsIHIVRylhyjXix5zLhQffQ8D4DrDDdLwJO39xleQAW4qXFoWrfBVWsLMAGivHKtBYfvXkbY1W1aQBQabyqHUw_mE3tYmdyfoqPMFAHOdnOA5g_3s_Ekmr4-Po1H08iyRDRRLBkbWkkSITIlhIpdmg25U9akmRSMcmNVDIwamxLGbSqYUZZmVjpmul3KBuh2m7tq0xKcharrUuiVz0vjN7o2uf5_qfKlXtRrzaXgRJIu4HIX4OuvFkKjyzxYKApTQd0GTRPVyeu6xB16tUWtr0PwkO3fUKJ__OvOv9767-CLv8X26K9w9g3MZ4K5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790966532</pqid></control><display><type>article</type><title>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gravells, Polly ; Ahrabi, Sara ; Vangala, Rajani K ; Tomita, Kazunori ; Brash, James T ; Brustle, Lena A ; Chung, Christopher ; Hong, Julia M ; Kaloudi, Aikaterini ; Humphrey, Timothy C ; Porter, Andrew C G</creator><creatorcontrib>Gravells, Polly ; Ahrabi, Sara ; Vangala, Rajani K ; Tomita, Kazunori ; Brash, James T ; Brustle, Lena A ; Chung, Christopher ; Hong, Julia M ; Kaloudi, Aikaterini ; Humphrey, Timothy C ; Porter, Andrew C G</creatorcontrib><description>Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddv409</identifier><identifier>PMID: 26423459</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Bacterial Proteins - metabolism ; Cell Cycle ; Cell Line, Tumor ; CRISPR-Cas Systems ; Deoxyribonucleases, Type II Site-Specific - metabolism ; DNA Breaks, Double-Stranded ; DNA Repair ; Endonucleases - metabolism ; Genes, Reporter ; HeLa Cells ; Humans ; Hypoxanthine Phosphoribosyltransferase - genetics ; Mice ; Mutagenesis ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Human molecular genetics, 2015-12, Vol.24 (24), p.7097-7110</ispartof><rights>The Author 2015. Published by Oxford University Press.</rights><rights>The Author 2015. Published by Oxford University Press 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</citedby><cites>FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26423459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravells, Polly</creatorcontrib><creatorcontrib>Ahrabi, Sara</creatorcontrib><creatorcontrib>Vangala, Rajani K</creatorcontrib><creatorcontrib>Tomita, Kazunori</creatorcontrib><creatorcontrib>Brash, James T</creatorcontrib><creatorcontrib>Brustle, Lena A</creatorcontrib><creatorcontrib>Chung, Christopher</creatorcontrib><creatorcontrib>Hong, Julia M</creatorcontrib><creatorcontrib>Kaloudi, Aikaterini</creatorcontrib><creatorcontrib>Humphrey, Timothy C</creatorcontrib><creatorcontrib>Porter, Andrew C G</creatorcontrib><title>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.</description><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Cycle</subject><subject>Cell Line, Tumor</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleases, Type II Site-Specific - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>Endonucleases - metabolism</subject><subject>Genes, Reporter</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hypoxanthine Phosphoribosyltransferase - genetics</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkNtKAzEQhoMotlZvfADJpQiryeawzY1Q6qFCPSDtdcgms-3qHmqyW-jbu9Ja9Gpg5uOfnw-hc0quKVHsZlkubpxbc6IOUJ9ySaKYDNkh6hMleSQVkT10EsIHIVRylhyjXix5zLhQffQ8D4DrDDdLwJO39xleQAW4qXFoWrfBVWsLMAGivHKtBYfvXkbY1W1aQBQabyqHUw_mE3tYmdyfoqPMFAHOdnOA5g_3s_Ekmr4-Po1H08iyRDRRLBkbWkkSITIlhIpdmg25U9akmRSMcmNVDIwamxLGbSqYUZZmVjpmul3KBuh2m7tq0xKcharrUuiVz0vjN7o2uf5_qfKlXtRrzaXgRJIu4HIX4OuvFkKjyzxYKApTQd0GTRPVyeu6xB16tUWtr0PwkO3fUKJ__OvOv9767-CLv8X26K9w9g3MZ4K5</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Gravells, Polly</creator><creator>Ahrabi, Sara</creator><creator>Vangala, Rajani K</creator><creator>Tomita, Kazunori</creator><creator>Brash, James T</creator><creator>Brustle, Lena A</creator><creator>Chung, Christopher</creator><creator>Hong, Julia M</creator><creator>Kaloudi, Aikaterini</creator><creator>Humphrey, Timothy C</creator><creator>Porter, Andrew C G</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20151215</creationdate><title>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</title><author>Gravells, Polly ; Ahrabi, Sara ; Vangala, Rajani K ; Tomita, Kazunori ; Brash, James T ; Brustle, Lena A ; Chung, Christopher ; Hong, Julia M ; Kaloudi, Aikaterini ; Humphrey, Timothy C ; Porter, Andrew C G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-26338c60755f95592dbf84d9cabf65314ac92e31acb034cb53a9c1fc6d3aacbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Cycle</topic><topic>Cell Line, Tumor</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleases, Type II Site-Specific - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>Endonucleases - metabolism</topic><topic>Genes, Reporter</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hypoxanthine Phosphoribosyltransferase - genetics</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravells, Polly</creatorcontrib><creatorcontrib>Ahrabi, Sara</creatorcontrib><creatorcontrib>Vangala, Rajani K</creatorcontrib><creatorcontrib>Tomita, Kazunori</creatorcontrib><creatorcontrib>Brash, James T</creatorcontrib><creatorcontrib>Brustle, Lena A</creatorcontrib><creatorcontrib>Chung, Christopher</creatorcontrib><creatorcontrib>Hong, Julia M</creatorcontrib><creatorcontrib>Kaloudi, Aikaterini</creatorcontrib><creatorcontrib>Humphrey, Timothy C</creatorcontrib><creatorcontrib>Porter, Andrew C G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravells, Polly</au><au>Ahrabi, Sara</au><au>Vangala, Rajani K</au><au>Tomita, Kazunori</au><au>Brash, James T</au><au>Brustle, Lena A</au><au>Chung, Christopher</au><au>Hong, Julia M</au><au>Kaloudi, Aikaterini</au><au>Humphrey, Timothy C</au><au>Porter, Andrew C G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the HPRT gene to study nuclease-induced DNA double-strand break repair</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>24</volume><issue>24</issue><spage>7097</spage><epage>7110</epage><pages>7097-7110</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26423459</pmid><doi>10.1093/hmg/ddv409</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2015-12, Vol.24 (24), p.7097-7110
issn 0964-6906
1460-2083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654060
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Bacterial Proteins - metabolism
Cell Cycle
Cell Line, Tumor
CRISPR-Cas Systems
Deoxyribonucleases, Type II Site-Specific - metabolism
DNA Breaks, Double-Stranded
DNA Repair
Endonucleases - metabolism
Genes, Reporter
HeLa Cells
Humans
Hypoxanthine Phosphoribosyltransferase - genetics
Mice
Mutagenesis
Saccharomyces cerevisiae Proteins - metabolism
title Use of the HPRT gene to study nuclease-induced DNA double-strand break repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20HPRT%20gene%20to%20study%20nuclease-induced%20DNA%20double-strand%20break%20repair&rft.jtitle=Human%20molecular%20genetics&rft.au=Gravells,%20Polly&rft.date=2015-12-15&rft.volume=24&rft.issue=24&rft.spage=7097&rft.epage=7110&rft.pages=7097-7110&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddv409&rft_dat=%3Cproquest_pubme%3E1790966532%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790966532&rft_id=info:pmid/26423459&rfr_iscdi=true