Sense and antisense transcription are associated with distinct chromatin architectures across genes

Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2015-09, Vol.43 (16), p.7823-7837
Hauptverfasser: Murray, Struan C, Haenni, Simon, Howe, Françoise S, Fischl, Harry, Chocian, Karolina, Nair, Anitha, Mellor, Jane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7837
container_issue 16
container_start_page 7823
container_title Nucleic acids research
container_volume 43
creator Murray, Struan C
Haenni, Simon
Howe, Françoise S
Fischl, Harry
Chocian, Karolina
Nair, Anitha
Mellor, Jane
description Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.
doi_str_mv 10.1093/nar/gkv666
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4652749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1713947158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-d5da753ae609aaad00569b74e2dbea40882b0a3e4369195d1753eea4ea8aba9b3</originalsourceid><addsrcrecordid>eNqNkV9LHDEUxUOp1NX2pR9A5rEURm_-TGbyUihiVRB8aPsc7iTX3dTdzJpkFb-90bWibz6E5HJ-HO7JYewrh0MORh5FTEfz61ut9Qc241KLVhktPrIZSOhaDmrYZXs5_wPginfqE9sVmkvoBcyY-00xU4PR11NCfppKwphdCusSpthgqnrOkwtYyDd3oSwaH3IJ0ZXGLdK0wvqumFuEQq5sEuUGXZpybuYUKX9mO1e4zPTl-d5nf3-d_Dk-ay8uT8-Pf160TnFeWt957DuJpMEgogfotBl7RcKPhAqGQYyAkpTUhpvO8wpTFQgHHNGMcp_92PquN-OKvKNYgyztOoUVpns7YbBvlRgWdj7dWqU70StTDb49G6TpZkO52FXIjpZLjDRtsuW96PUAIIZ3oFwa1fPuEf2-RZ--JNHVy0Yc7GOBthZotwVW-OB1hhf0f2PyAaNWmzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713947158</pqid></control><display><type>article</type><title>Sense and antisense transcription are associated with distinct chromatin architectures across genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Murray, Struan C ; Haenni, Simon ; Howe, Françoise S ; Fischl, Harry ; Chocian, Karolina ; Nair, Anitha ; Mellor, Jane</creator><creatorcontrib>Murray, Struan C ; Haenni, Simon ; Howe, Françoise S ; Fischl, Harry ; Chocian, Karolina ; Nair, Anitha ; Mellor, Jane</creatorcontrib><description>Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv666</identifier><identifier>PMID: 26130720</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetylation ; Chromatin - chemistry ; Chromatin - metabolism ; Chromatin Assembly and Disassembly ; Galactokinase - genetics ; Gene Deletion ; Gene regulation, Chromatin and Epigenetics ; Genes, Fungal ; Histone Chaperones - metabolism ; Histones - metabolism ; Nucleosomes - metabolism ; Promoter Regions, Genetic ; RNA, Antisense - biosynthesis ; Saccharomyces cerevisiae Proteins - genetics ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2015-09, Vol.43 (16), p.7823-7837</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-d5da753ae609aaad00569b74e2dbea40882b0a3e4369195d1753eea4ea8aba9b3</citedby><cites>FETCH-LOGICAL-c411t-d5da753ae609aaad00569b74e2dbea40882b0a3e4369195d1753eea4ea8aba9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652749/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652749/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26130720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murray, Struan C</creatorcontrib><creatorcontrib>Haenni, Simon</creatorcontrib><creatorcontrib>Howe, Françoise S</creatorcontrib><creatorcontrib>Fischl, Harry</creatorcontrib><creatorcontrib>Chocian, Karolina</creatorcontrib><creatorcontrib>Nair, Anitha</creatorcontrib><creatorcontrib>Mellor, Jane</creatorcontrib><title>Sense and antisense transcription are associated with distinct chromatin architectures across genes</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.</description><subject>Acetylation</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Galactokinase - genetics</subject><subject>Gene Deletion</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Genes, Fungal</subject><subject>Histone Chaperones - metabolism</subject><subject>Histones - metabolism</subject><subject>Nucleosomes - metabolism</subject><subject>Promoter Regions, Genetic</subject><subject>RNA, Antisense - biosynthesis</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9LHDEUxUOp1NX2pR9A5rEURm_-TGbyUihiVRB8aPsc7iTX3dTdzJpkFb-90bWibz6E5HJ-HO7JYewrh0MORh5FTEfz61ut9Qc241KLVhktPrIZSOhaDmrYZXs5_wPginfqE9sVmkvoBcyY-00xU4PR11NCfppKwphdCusSpthgqnrOkwtYyDd3oSwaH3IJ0ZXGLdK0wvqumFuEQq5sEuUGXZpybuYUKX9mO1e4zPTl-d5nf3-d_Dk-ay8uT8-Pf160TnFeWt957DuJpMEgogfotBl7RcKPhAqGQYyAkpTUhpvO8wpTFQgHHNGMcp_92PquN-OKvKNYgyztOoUVpns7YbBvlRgWdj7dWqU70StTDb49G6TpZkO52FXIjpZLjDRtsuW96PUAIIZ3oFwa1fPuEf2-RZ--JNHVy0Yc7GOBthZotwVW-OB1hhf0f2PyAaNWmzg</recordid><startdate>20150918</startdate><enddate>20150918</enddate><creator>Murray, Struan C</creator><creator>Haenni, Simon</creator><creator>Howe, Françoise S</creator><creator>Fischl, Harry</creator><creator>Chocian, Karolina</creator><creator>Nair, Anitha</creator><creator>Mellor, Jane</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150918</creationdate><title>Sense and antisense transcription are associated with distinct chromatin architectures across genes</title><author>Murray, Struan C ; Haenni, Simon ; Howe, Françoise S ; Fischl, Harry ; Chocian, Karolina ; Nair, Anitha ; Mellor, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-d5da753ae609aaad00569b74e2dbea40882b0a3e4369195d1753eea4ea8aba9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylation</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Galactokinase - genetics</topic><topic>Gene Deletion</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Genes, Fungal</topic><topic>Histone Chaperones - metabolism</topic><topic>Histones - metabolism</topic><topic>Nucleosomes - metabolism</topic><topic>Promoter Regions, Genetic</topic><topic>RNA, Antisense - biosynthesis</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Struan C</creatorcontrib><creatorcontrib>Haenni, Simon</creatorcontrib><creatorcontrib>Howe, Françoise S</creatorcontrib><creatorcontrib>Fischl, Harry</creatorcontrib><creatorcontrib>Chocian, Karolina</creatorcontrib><creatorcontrib>Nair, Anitha</creatorcontrib><creatorcontrib>Mellor, Jane</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Struan C</au><au>Haenni, Simon</au><au>Howe, Françoise S</au><au>Fischl, Harry</au><au>Chocian, Karolina</au><au>Nair, Anitha</au><au>Mellor, Jane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sense and antisense transcription are associated with distinct chromatin architectures across genes</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2015-09-18</date><risdate>2015</risdate><volume>43</volume><issue>16</issue><spage>7823</spage><epage>7837</epage><pages>7823-7837</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26130720</pmid><doi>10.1093/nar/gkv666</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2015-09, Vol.43 (16), p.7823-7837
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4652749
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylation
Chromatin - chemistry
Chromatin - metabolism
Chromatin Assembly and Disassembly
Galactokinase - genetics
Gene Deletion
Gene regulation, Chromatin and Epigenetics
Genes, Fungal
Histone Chaperones - metabolism
Histones - metabolism
Nucleosomes - metabolism
Promoter Regions, Genetic
RNA, Antisense - biosynthesis
Saccharomyces cerevisiae Proteins - genetics
Transcription, Genetic
title Sense and antisense transcription are associated with distinct chromatin architectures across genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sense%20and%20antisense%20transcription%20are%20associated%20with%20distinct%20chromatin%20architectures%20across%20genes&rft.jtitle=Nucleic%20acids%20research&rft.au=Murray,%20Struan%20C&rft.date=2015-09-18&rft.volume=43&rft.issue=16&rft.spage=7823&rft.epage=7837&rft.pages=7823-7837&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv666&rft_dat=%3Cproquest_pubme%3E1713947158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713947158&rft_id=info:pmid/26130720&rfr_iscdi=true