An Integrated Approach for Identifying and Mapping Human Genes

We have developed a method for generating expressed-sequence maps of human chromosomes. The method involves several steps that begin with libraries of highly representative short cDNAs prepared by using random oligomers as primers. The cDNA inserts are amplified by PCR with flanking vector primers....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-05, Vol.90 (10), p.4364-4368
Hauptverfasser: Gupta, Ruchira Das, Morrow, Bernice, Marondel, Ivonne, Parimoo, Satish, Goei, Vita L., Gruen, Jeffrey, Weissman, Sherman, Skoultchi, Arthur, Kuchrlapati, Raju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4368
container_issue 10
container_start_page 4364
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Gupta, Ruchira Das
Morrow, Bernice
Marondel, Ivonne
Parimoo, Satish
Goei, Vita L.
Gruen, Jeffrey
Weissman, Sherman
Skoultchi, Arthur
Kuchrlapati, Raju
description We have developed a method for generating expressed-sequence maps of human chromosomes. The method involves several steps that begin with libraries of highly representative short cDNAs prepared by using random oligomers as primers. The cDNA inserts are amplified by PCR with flanking vector primers. Chromosomal region-specific cDNA packets are prepared by hybridization of the cDNA inserts to DNA derived from yeast artificial chromosomes (YACs) assigned to defined regions of human chromosomes. The cDNA packets are cloned into yeast chromosome fragmentation vectors and used for transformation of yeast bearing the YAC used for affinity purification. Sequences in the cDNAs undergo homologous recombination with the corresponding exons in the genomic DNA yielding a set of truncated YACs. Each unique truncation specifies the location of an exon in the YAC. Since all of the truncation events end with the same vector sequence, it is possible to rescue and sequence these ends to generate expressed sequence tags. The method couples rapid purification of region-specific cDNAs with precise mapping of their genes on YACs. Appropriately truncated YACs also provide easy access to gene regulatory sequences. We describe the feasibility of individual steps of the method using the factor IX (F9) gene as a model system and we present the mapping of several expressed sequences corresponding to a 330-kb YAC containing DNA from human chromosome 6p21. In addition, we obtained the sequence, including an intron-exon junction, flanking a particular truncation event.
doi_str_mv 10.1073/pnas.90.10.4364
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_46511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2362077</jstor_id><sourcerecordid>2362077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-aa09d5f43cfb0558b97becc51c95e33507824622bd84b337f4e3c3bbe315f4cf3</originalsourceid><addsrcrecordid>eNqFkc-L1DAUx4Mo67h69qJSFtFTZ_M7DcjCsOjuwIoXPYc0TWc6dJKapOL-96ZM7epFT8nj-3nvm7wvAC8RXCMoyOXgdFzLqVhTwukjsEJQopJTCR-DFYRYlBXF9Cl4FuMBQihZBc_AWcUgx4KuwNXGFVuX7C7oZJtiMwzBa7MvWh-KbWNd6tr7zu0K7Zrisx6G6X47HrUrbqyz8Tl40uo-2hfzeQ6-ffr49fq2vPtys73e3JWGCZ5KraFsWEuJaWvIWFVLUVtjGDKSWUIYFBWmHOO6qWhNiGipJYbUtSUod5mWnIMPp7nDWB9tY_LDgu7VELqjDvfK6079rbhur3b-h6KcIZTbL07tPqZORdMla_bGO2dNUhxTQYTI0LvZI_jvo41JHbtobN9rZ_0YlWBC8oqi_4KIM5HDwQ-2C3jwY3B5UQpDhAVH1TTt8gSZ4GMMtl1-haCaMlZTxkpOhZoyzh2v_1zGws-hZv3trOtodN8G7UwXF4xmU8kn4_czNs3_rT74qHbs-2R_pky--SeZgVcn4BCTDwuBCccwb_YXjDjPWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201276181</pqid></control><display><type>article</type><title>An Integrated Approach for Identifying and Mapping Human Genes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gupta, Ruchira Das ; Morrow, Bernice ; Marondel, Ivonne ; Parimoo, Satish ; Goei, Vita L. ; Gruen, Jeffrey ; Weissman, Sherman ; Skoultchi, Arthur ; Kuchrlapati, Raju</creator><creatorcontrib>Gupta, Ruchira Das ; Morrow, Bernice ; Marondel, Ivonne ; Parimoo, Satish ; Goei, Vita L. ; Gruen, Jeffrey ; Weissman, Sherman ; Skoultchi, Arthur ; Kuchrlapati, Raju</creatorcontrib><description>We have developed a method for generating expressed-sequence maps of human chromosomes. The method involves several steps that begin with libraries of highly representative short cDNAs prepared by using random oligomers as primers. The cDNA inserts are amplified by PCR with flanking vector primers. Chromosomal region-specific cDNA packets are prepared by hybridization of the cDNA inserts to DNA derived from yeast artificial chromosomes (YACs) assigned to defined regions of human chromosomes. The cDNA packets are cloned into yeast chromosome fragmentation vectors and used for transformation of yeast bearing the YAC used for affinity purification. Sequences in the cDNAs undergo homologous recombination with the corresponding exons in the genomic DNA yielding a set of truncated YACs. Each unique truncation specifies the location of an exon in the YAC. Since all of the truncation events end with the same vector sequence, it is possible to rescue and sequence these ends to generate expressed sequence tags. The method couples rapid purification of region-specific cDNAs with precise mapping of their genes on YACs. Appropriately truncated YACs also provide easy access to gene regulatory sequences. We describe the feasibility of individual steps of the method using the factor IX (F9) gene as a model system and we present the mapping of several expressed sequences corresponding to a 330-kb YAC containing DNA from human chromosome 6p21. In addition, we obtained the sequence, including an intron-exon junction, flanking a particular truncation event.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.10.4364</identifier><identifier>PMID: 8506274</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550400 - Genetics ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; cDNA ; CDNA libraries ; Chromosome Mapping - methods ; CHROMOSOMES ; Chromosomes, Human, Pair 6 ; CLONING ; Cloning, Molecular ; Complementary DNA ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA HYBRIDIZATION ; DNA probes ; DNA SEQUENCING ; DNA-CLONING ; Exons ; Factor IX - genetics ; FRAGMENTATION ; Fundamental and applied biological sciences. Psychology ; gene mapping ; GENES ; GENETIC MAPPING ; Genetic Vectors ; Genetics ; Genomics ; HUMAN CHROMOSOMES ; Humans ; HYBRIDIZATION ; man ; MAPPING ; Molecular and cellular biology ; Molecular Sequence Data ; NUCLEIC ACIDS ; Oligodeoxyribonucleotides - chemistry ; ORGANIC COMPOUNDS ; Polymerase Chain Reaction ; recombination ; Saccharomyces cerevisiae - genetics ; STRUCTURAL CHEMICAL ANALYSIS ; yeast artificial chromosomes ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-05, Vol.90 (10), p.4364-4368</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences May 15, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-aa09d5f43cfb0558b97becc51c95e33507824622bd84b337f4e3c3bbe315f4cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2362077$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2362077$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4813961$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8506274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6247377$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Ruchira Das</creatorcontrib><creatorcontrib>Morrow, Bernice</creatorcontrib><creatorcontrib>Marondel, Ivonne</creatorcontrib><creatorcontrib>Parimoo, Satish</creatorcontrib><creatorcontrib>Goei, Vita L.</creatorcontrib><creatorcontrib>Gruen, Jeffrey</creatorcontrib><creatorcontrib>Weissman, Sherman</creatorcontrib><creatorcontrib>Skoultchi, Arthur</creatorcontrib><creatorcontrib>Kuchrlapati, Raju</creatorcontrib><title>An Integrated Approach for Identifying and Mapping Human Genes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have developed a method for generating expressed-sequence maps of human chromosomes. The method involves several steps that begin with libraries of highly representative short cDNAs prepared by using random oligomers as primers. The cDNA inserts are amplified by PCR with flanking vector primers. Chromosomal region-specific cDNA packets are prepared by hybridization of the cDNA inserts to DNA derived from yeast artificial chromosomes (YACs) assigned to defined regions of human chromosomes. The cDNA packets are cloned into yeast chromosome fragmentation vectors and used for transformation of yeast bearing the YAC used for affinity purification. Sequences in the cDNAs undergo homologous recombination with the corresponding exons in the genomic DNA yielding a set of truncated YACs. Each unique truncation specifies the location of an exon in the YAC. Since all of the truncation events end with the same vector sequence, it is possible to rescue and sequence these ends to generate expressed sequence tags. The method couples rapid purification of region-specific cDNAs with precise mapping of their genes on YACs. Appropriately truncated YACs also provide easy access to gene regulatory sequences. We describe the feasibility of individual steps of the method using the factor IX (F9) gene as a model system and we present the mapping of several expressed sequences corresponding to a 330-kb YAC containing DNA from human chromosome 6p21. In addition, we obtained the sequence, including an intron-exon junction, flanking a particular truncation event.</description><subject>550400 - Genetics</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>cDNA</subject><subject>CDNA libraries</subject><subject>Chromosome Mapping - methods</subject><subject>CHROMOSOMES</subject><subject>Chromosomes, Human, Pair 6</subject><subject>CLONING</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA HYBRIDIZATION</subject><subject>DNA probes</subject><subject>DNA SEQUENCING</subject><subject>DNA-CLONING</subject><subject>Exons</subject><subject>Factor IX - genetics</subject><subject>FRAGMENTATION</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene mapping</subject><subject>GENES</subject><subject>GENETIC MAPPING</subject><subject>Genetic Vectors</subject><subject>Genetics</subject><subject>Genomics</subject><subject>HUMAN CHROMOSOMES</subject><subject>Humans</subject><subject>HYBRIDIZATION</subject><subject>man</subject><subject>MAPPING</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>NUCLEIC ACIDS</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>ORGANIC COMPOUNDS</subject><subject>Polymerase Chain Reaction</subject><subject>recombination</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>STRUCTURAL CHEMICAL ANALYSIS</subject><subject>yeast artificial chromosomes</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-L1DAUx4Mo67h69qJSFtFTZ_M7DcjCsOjuwIoXPYc0TWc6dJKapOL-96ZM7epFT8nj-3nvm7wvAC8RXCMoyOXgdFzLqVhTwukjsEJQopJTCR-DFYRYlBXF9Cl4FuMBQihZBc_AWcUgx4KuwNXGFVuX7C7oZJtiMwzBa7MvWh-KbWNd6tr7zu0K7Zrisx6G6X47HrUrbqyz8Tl40uo-2hfzeQ6-ffr49fq2vPtys73e3JWGCZ5KraFsWEuJaWvIWFVLUVtjGDKSWUIYFBWmHOO6qWhNiGipJYbUtSUod5mWnIMPp7nDWB9tY_LDgu7VELqjDvfK6079rbhur3b-h6KcIZTbL07tPqZORdMla_bGO2dNUhxTQYTI0LvZI_jvo41JHbtobN9rZ_0YlWBC8oqi_4KIM5HDwQ-2C3jwY3B5UQpDhAVH1TTt8gSZ4GMMtl1-haCaMlZTxkpOhZoyzh2v_1zGws-hZv3trOtodN8G7UwXF4xmU8kn4_czNs3_rT74qHbs-2R_pky--SeZgVcn4BCTDwuBCccwb_YXjDjPWw</recordid><startdate>19930515</startdate><enddate>19930515</enddate><creator>Gupta, Ruchira Das</creator><creator>Morrow, Bernice</creator><creator>Marondel, Ivonne</creator><creator>Parimoo, Satish</creator><creator>Goei, Vita L.</creator><creator>Gruen, Jeffrey</creator><creator>Weissman, Sherman</creator><creator>Skoultchi, Arthur</creator><creator>Kuchrlapati, Raju</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19930515</creationdate><title>An Integrated Approach for Identifying and Mapping Human Genes</title><author>Gupta, Ruchira Das ; Morrow, Bernice ; Marondel, Ivonne ; Parimoo, Satish ; Goei, Vita L. ; Gruen, Jeffrey ; Weissman, Sherman ; Skoultchi, Arthur ; Kuchrlapati, Raju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-aa09d5f43cfb0558b97becc51c95e33507824622bd84b337f4e3c3bbe315f4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>550400 - Genetics</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>cDNA</topic><topic>CDNA libraries</topic><topic>Chromosome Mapping - methods</topic><topic>CHROMOSOMES</topic><topic>Chromosomes, Human, Pair 6</topic><topic>CLONING</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA HYBRIDIZATION</topic><topic>DNA probes</topic><topic>DNA SEQUENCING</topic><topic>DNA-CLONING</topic><topic>Exons</topic><topic>Factor IX - genetics</topic><topic>FRAGMENTATION</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene mapping</topic><topic>GENES</topic><topic>GENETIC MAPPING</topic><topic>Genetic Vectors</topic><topic>Genetics</topic><topic>Genomics</topic><topic>HUMAN CHROMOSOMES</topic><topic>Humans</topic><topic>HYBRIDIZATION</topic><topic>man</topic><topic>MAPPING</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>NUCLEIC ACIDS</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>ORGANIC COMPOUNDS</topic><topic>Polymerase Chain Reaction</topic><topic>recombination</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>STRUCTURAL CHEMICAL ANALYSIS</topic><topic>yeast artificial chromosomes</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Ruchira Das</creatorcontrib><creatorcontrib>Morrow, Bernice</creatorcontrib><creatorcontrib>Marondel, Ivonne</creatorcontrib><creatorcontrib>Parimoo, Satish</creatorcontrib><creatorcontrib>Goei, Vita L.</creatorcontrib><creatorcontrib>Gruen, Jeffrey</creatorcontrib><creatorcontrib>Weissman, Sherman</creatorcontrib><creatorcontrib>Skoultchi, Arthur</creatorcontrib><creatorcontrib>Kuchrlapati, Raju</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Human Genome Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Ruchira Das</au><au>Morrow, Bernice</au><au>Marondel, Ivonne</au><au>Parimoo, Satish</au><au>Goei, Vita L.</au><au>Gruen, Jeffrey</au><au>Weissman, Sherman</au><au>Skoultchi, Arthur</au><au>Kuchrlapati, Raju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Approach for Identifying and Mapping Human Genes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-05-15</date><risdate>1993</risdate><volume>90</volume><issue>10</issue><spage>4364</spage><epage>4368</epage><pages>4364-4368</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We have developed a method for generating expressed-sequence maps of human chromosomes. The method involves several steps that begin with libraries of highly representative short cDNAs prepared by using random oligomers as primers. The cDNA inserts are amplified by PCR with flanking vector primers. Chromosomal region-specific cDNA packets are prepared by hybridization of the cDNA inserts to DNA derived from yeast artificial chromosomes (YACs) assigned to defined regions of human chromosomes. The cDNA packets are cloned into yeast chromosome fragmentation vectors and used for transformation of yeast bearing the YAC used for affinity purification. Sequences in the cDNAs undergo homologous recombination with the corresponding exons in the genomic DNA yielding a set of truncated YACs. Each unique truncation specifies the location of an exon in the YAC. Since all of the truncation events end with the same vector sequence, it is possible to rescue and sequence these ends to generate expressed sequence tags. The method couples rapid purification of region-specific cDNAs with precise mapping of their genes on YACs. Appropriately truncated YACs also provide easy access to gene regulatory sequences. We describe the feasibility of individual steps of the method using the factor IX (F9) gene as a model system and we present the mapping of several expressed sequences corresponding to a 330-kb YAC containing DNA from human chromosome 6p21. In addition, we obtained the sequence, including an intron-exon junction, flanking a particular truncation event.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8506274</pmid><doi>10.1073/pnas.90.10.4364</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-05, Vol.90 (10), p.4364-4368
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_46511
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 550400 - Genetics
Base Sequence
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
cDNA
CDNA libraries
Chromosome Mapping - methods
CHROMOSOMES
Chromosomes, Human, Pair 6
CLONING
Cloning, Molecular
Complementary DNA
Deoxyribonucleic acid
Diverse techniques
DNA
DNA HYBRIDIZATION
DNA probes
DNA SEQUENCING
DNA-CLONING
Exons
Factor IX - genetics
FRAGMENTATION
Fundamental and applied biological sciences. Psychology
gene mapping
GENES
GENETIC MAPPING
Genetic Vectors
Genetics
Genomics
HUMAN CHROMOSOMES
Humans
HYBRIDIZATION
man
MAPPING
Molecular and cellular biology
Molecular Sequence Data
NUCLEIC ACIDS
Oligodeoxyribonucleotides - chemistry
ORGANIC COMPOUNDS
Polymerase Chain Reaction
recombination
Saccharomyces cerevisiae - genetics
STRUCTURAL CHEMICAL ANALYSIS
yeast artificial chromosomes
Yeasts
title An Integrated Approach for Identifying and Mapping Human Genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Approach%20for%20Identifying%20and%20Mapping%20Human%20Genes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gupta,%20Ruchira%20Das&rft.date=1993-05-15&rft.volume=90&rft.issue=10&rft.spage=4364&rft.epage=4368&rft.pages=4364-4368&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.10.4364&rft_dat=%3Cjstor_pubme%3E2362077%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201276181&rft_id=info:pmid/8506274&rft_jstor_id=2362077&rfr_iscdi=true