CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression

Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2014-10, Vol.5 (10), p.e1485-e1485
Hauptverfasser: Liu, S-C, Chuang, S-M, Hsu, C-J, Tsai, C-H, Wang, S-W, Tang, C-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1485
container_issue 10
container_start_page e1485
container_title Cell death & disease
container_volume 5
creator Liu, S-C
Chuang, S-M
Hsu, C-J
Tsai, C-H
Wang, S-W
Tang, C-H
description Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor- κ B (NF- κ B)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1 α -dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo . Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF- κ B/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1 α -dependent VEGF expression and angiogenesis in human synovial fibroblasts.
doi_str_mv 10.1038/cddis.2014.453
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4649533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618151696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-ae4d2dea93ac2025a9bd6f1661e4b9c897928ee475f9c46f43715275582ed9783</originalsourceid><addsrcrecordid>eNqFkk9r3DAQxU1paUKaa49F0Esv3lh_bV0KZWmSQqBQ0rOQ5bFXwSttNfam-wn6tavNJmFbCtVFgvebNxrpFcVbWi1oxZsL13UeF6yiYiEkf1GcskrQUjSNfnl0PinOEe-qvDivmFSvixMmucgO-rT4tby9uiQ-uAQWAcnWoptHmwiELk4rGL0dyZDi_bQivXVTTGUHmyxCmIgNg48DBECP2YOs5rUNBHchbvdlvW9TbEeLE5J299TEh4Gs_beS0YrAz00CRB_Dm-JVb0eE88f9rPh--fl2eV3efL36svx0Uzop66m0IDrWgdXcOpaHsbrtVE-VoiBa7Rpda9YAiFr22gnVC15TyWopGwadrht-Vnw8-G7mdg2dy2MkO5pN8mubdiZab_5Ugl-ZIW6NUEJLzrPBh0eDFH_MgJNZe3QwjjZAnNHQWldaMS2r_6OKNlRSpVVG3_-F3sU5hfwS2bBRjDOmWaYWB8qliJigf743rcw-EeYhEWafCJMTkQveHU_7jD_9fwYuDgBmKQyQjvr-2_I3LkPEKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786232292</pqid></control><display><type>article</type><title>CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Liu, S-C ; Chuang, S-M ; Hsu, C-J ; Tsai, C-H ; Wang, S-W ; Tang, C-H</creator><creatorcontrib>Liu, S-C ; Chuang, S-M ; Hsu, C-J ; Tsai, C-H ; Wang, S-W ; Tang, C-H</creatorcontrib><description>Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor- κ B (NF- κ B)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1 α -dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo . Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF- κ B/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1 α -dependent VEGF expression and angiogenesis in human synovial fibroblasts.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2014.453</identifier><identifier>PMID: 25341039</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/44 ; 13/51 ; 13/89 ; 14/63 ; 38/15 ; 45/90 ; 631/337/384/331 ; 631/443/1338/16 ; 692/420 ; 692/699/1670/407 ; 82/29 ; 82/80 ; 96/1 ; 96/106 ; 96/109 ; 96/44 ; 96/95 ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Case-Control Studies ; Cell Biology ; Cell Culture ; Connective Tissue Growth Factor - metabolism ; ets-Domain Protein Elk-1 - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Gene Knockdown Techniques ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases - metabolism ; Immunology ; Life Sciences ; MicroRNAs - metabolism ; Models, Biological ; Neovascularization, Physiologic ; NF-kappa B - metabolism ; Original ; original-article ; Osteoarthritis - pathology ; Phosphatidylinositol 3-Kinases - metabolism ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction ; Synovial Membrane - pathology ; Up-Regulation ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Cell death &amp; disease, 2014-10, Vol.5 (10), p.e1485-e1485</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Oct 2014</rights><rights>Copyright © 2014 Macmillan Publishers Limited 2014 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-ae4d2dea93ac2025a9bd6f1661e4b9c897928ee475f9c46f43715275582ed9783</citedby><cites>FETCH-LOGICAL-c557t-ae4d2dea93ac2025a9bd6f1661e4b9c897928ee475f9c46f43715275582ed9783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649533/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25341039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, S-C</creatorcontrib><creatorcontrib>Chuang, S-M</creatorcontrib><creatorcontrib>Hsu, C-J</creatorcontrib><creatorcontrib>Tsai, C-H</creatorcontrib><creatorcontrib>Wang, S-W</creatorcontrib><creatorcontrib>Tang, C-H</creatorcontrib><title>CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor- κ B (NF- κ B)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1 α -dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo . Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF- κ B/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1 α -dependent VEGF expression and angiogenesis in human synovial fibroblasts.</description><subject>13/44</subject><subject>13/51</subject><subject>13/89</subject><subject>14/63</subject><subject>38/15</subject><subject>45/90</subject><subject>631/337/384/331</subject><subject>631/443/1338/16</subject><subject>692/420</subject><subject>692/699/1670/407</subject><subject>82/29</subject><subject>82/80</subject><subject>96/1</subject><subject>96/106</subject><subject>96/109</subject><subject>96/44</subject><subject>96/95</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Case-Control Studies</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Connective Tissue Growth Factor - metabolism</subject><subject>ets-Domain Protein Elk-1 - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-Inducible Factor-Proline Dioxygenases - metabolism</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>MicroRNAs - metabolism</subject><subject>Models, Biological</subject><subject>Neovascularization, Physiologic</subject><subject>NF-kappa B - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Osteoarthritis - pathology</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction</subject><subject>Synovial Membrane - pathology</subject><subject>Up-Regulation</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk9r3DAQxU1paUKaa49F0Esv3lh_bV0KZWmSQqBQ0rOQ5bFXwSttNfam-wn6tavNJmFbCtVFgvebNxrpFcVbWi1oxZsL13UeF6yiYiEkf1GcskrQUjSNfnl0PinOEe-qvDivmFSvixMmucgO-rT4tby9uiQ-uAQWAcnWoptHmwiELk4rGL0dyZDi_bQivXVTTGUHmyxCmIgNg48DBECP2YOs5rUNBHchbvdlvW9TbEeLE5J299TEh4Gs_beS0YrAz00CRB_Dm-JVb0eE88f9rPh--fl2eV3efL36svx0Uzop66m0IDrWgdXcOpaHsbrtVE-VoiBa7Rpda9YAiFr22gnVC15TyWopGwadrht-Vnw8-G7mdg2dy2MkO5pN8mubdiZab_5Ugl-ZIW6NUEJLzrPBh0eDFH_MgJNZe3QwjjZAnNHQWldaMS2r_6OKNlRSpVVG3_-F3sU5hfwS2bBRjDOmWaYWB8qliJigf743rcw-EeYhEWafCJMTkQveHU_7jD_9fwYuDgBmKQyQjvr-2_I3LkPEKA</recordid><startdate>20141023</startdate><enddate>20141023</enddate><creator>Liu, S-C</creator><creator>Chuang, S-M</creator><creator>Hsu, C-J</creator><creator>Tsai, C-H</creator><creator>Wang, S-W</creator><creator>Tang, C-H</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TO</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20141023</creationdate><title>CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression</title><author>Liu, S-C ; Chuang, S-M ; Hsu, C-J ; Tsai, C-H ; Wang, S-W ; Tang, C-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-ae4d2dea93ac2025a9bd6f1661e4b9c897928ee475f9c46f43715275582ed9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/44</topic><topic>13/51</topic><topic>13/89</topic><topic>14/63</topic><topic>38/15</topic><topic>45/90</topic><topic>631/337/384/331</topic><topic>631/443/1338/16</topic><topic>692/420</topic><topic>692/699/1670/407</topic><topic>82/29</topic><topic>82/80</topic><topic>96/1</topic><topic>96/106</topic><topic>96/109</topic><topic>96/44</topic><topic>96/95</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Case-Control Studies</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Connective Tissue Growth Factor - metabolism</topic><topic>ets-Domain Protein Elk-1 - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-Inducible Factor-Proline Dioxygenases - metabolism</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>MicroRNAs - metabolism</topic><topic>Models, Biological</topic><topic>Neovascularization, Physiologic</topic><topic>NF-kappa B - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Osteoarthritis - pathology</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction</topic><topic>Synovial Membrane - pathology</topic><topic>Up-Regulation</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, S-C</creatorcontrib><creatorcontrib>Chuang, S-M</creatorcontrib><creatorcontrib>Hsu, C-J</creatorcontrib><creatorcontrib>Tsai, C-H</creatorcontrib><creatorcontrib>Wang, S-W</creatorcontrib><creatorcontrib>Tang, C-H</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, S-C</au><au>Chuang, S-M</au><au>Hsu, C-J</au><au>Tsai, C-H</au><au>Wang, S-W</au><au>Tang, C-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2014-10-23</date><risdate>2014</risdate><volume>5</volume><issue>10</issue><spage>e1485</spage><epage>e1485</epage><pages>e1485-e1485</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor- κ B (NF- κ B)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1 α -dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo . Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF- κ B/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1 α -dependent VEGF expression and angiogenesis in human synovial fibroblasts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25341039</pmid><doi>10.1038/cddis.2014.453</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2014-10, Vol.5 (10), p.e1485-e1485
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4649533
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central
subjects 13/44
13/51
13/89
14/63
38/15
45/90
631/337/384/331
631/443/1338/16
692/420
692/699/1670/407
82/29
82/80
96/1
96/106
96/109
96/44
96/95
Antibodies
Biochemistry
Biomedical and Life Sciences
Case-Control Studies
Cell Biology
Cell Culture
Connective Tissue Growth Factor - metabolism
ets-Domain Protein Elk-1 - metabolism
Extracellular Signal-Regulated MAP Kinases - metabolism
Fibroblasts - metabolism
Fibroblasts - pathology
Gene Knockdown Techniques
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-Inducible Factor-Proline Dioxygenases - metabolism
Immunology
Life Sciences
MicroRNAs - metabolism
Models, Biological
Neovascularization, Physiologic
NF-kappa B - metabolism
Original
original-article
Osteoarthritis - pathology
Phosphatidylinositol 3-Kinases - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction
Synovial Membrane - pathology
Up-Regulation
Vascular Endothelial Growth Factor A - metabolism
title CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CTGF%20increases%20vascular%20endothelial%20growth%20factor-dependent%20angiogenesis%20in%20human%20synovial%20fibroblasts%20by%20increasing%20miR-210%20expression&rft.jtitle=Cell%20death%20&%20disease&rft.au=Liu,%20S-C&rft.date=2014-10-23&rft.volume=5&rft.issue=10&rft.spage=e1485&rft.epage=e1485&rft.pages=e1485-e1485&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2014.453&rft_dat=%3Cproquest_pubme%3E1618151696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786232292&rft_id=info:pmid/25341039&rfr_iscdi=true