The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos
Chris Kintner and colleagues report that a Xenopus homolog of the transcription factor Foxj1 is sufficient to induce motile cilia by upregulating expression of genes encoding key components of the motile ciliary machinery. Similar findings are reported in a related study by Sudipto Roy and colleague...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2008-12, Vol.40 (12), p.1454-1460 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1460 |
---|---|
container_issue | 12 |
container_start_page | 1454 |
container_title | Nature genetics |
container_volume | 40 |
creator | Stubbs, Jennifer L Oishi, Isao Izpisúa Belmonte, Juan Carlos Kintner, Chris |
description | Chris Kintner and colleagues report that a
Xenopus
homolog of the transcription factor Foxj1 is sufficient to induce motile cilia by upregulating expression of genes encoding key components of the motile ciliary machinery. Similar findings are reported in a related study by Sudipto Roy and colleagues.
It has been proposed that ciliated cells that produce a leftward fluid flow mediate left-right patterning in many vertebrate embryos. The cilia on these cells combine features of primary sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue by analyzing the
Xenopus
and zebrafish homologs of Foxj1, a forkhead transcription factor necessary for ciliogenesis in multiciliated cells of the mouse. We show that the cilia that underlie left-right patterning on the
Xenopus
gastrocoel roof plate (GRP) and zebrafish Kupffer's vesicle are severely shortened or fail to form in Foxj1 morphants. We also show that misexpressing Foxj1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray analysis indicates that
Xenopus
Foxj1 induces the formation of cilia by upregulating the expression of motile cilia genes. These results indicate that Foxj1 is a critical determinant in the specification of cilia used in left-right patterning. |
doi_str_mv | 10.1038/ng.267 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4648715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192498264</galeid><sourcerecordid>A192498264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-b93bb4edb481287970ee581ade3f0079c9e6550ceded1801628deec1cdd34b903</originalsourceid><addsrcrecordid>eNqNktFqFDEUhoMotq76CBIUFC9mTWYymeRGKMVqoVDQVrwLmeTMbLazyZjMSOvTm7KLdYugBJKQ850_J38OQs8pWVJSiXe-X5a8eYAOac14QRsqHuY94bRgpOIH6ElKa0IoY0Q8RgdUEkp5KQ_R5cUKcBfi1Qq0xWMMEziPT8L1muI0gnGdg4R9sFAM7gqwcYPTOCPfwIdxTlh7i39CG3Xn0grDpo03IT1Fjzo9JHi2Wxfo8uTDxfGn4uz84-nx0VlheF1PRSurtmVgWyZoKRrZEIBaUG2h6ghppJGQOWLAgqWC5IqFBTDUWFuxVpJqgd5vdce53YA14KeoBzVGt9HxRgXt1H7Eu5Xqww_FOBMNrbPA651ADN9nSJPauGRgGLSHMCfFpSgZkc0_QSprXpeMZvDlPXAd5uizC6osS16xKk8L9GoL9XoA5XwXcnXmVlEdUVmyfCtnmVr-hcrDwsaZ4KFz-Xwv4e1eQmYmuJ56PaekTr98_n_2_Os-u3u8iSGlCN1vhylRt-2nfK9y-2XwxZ__cYft-i0Db7ZAyiHfQ7xz557ULwgI37E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222634326</pqid></control><display><type>article</type><title>The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Stubbs, Jennifer L ; Oishi, Isao ; Izpisúa Belmonte, Juan Carlos ; Kintner, Chris</creator><creatorcontrib>Stubbs, Jennifer L ; Oishi, Isao ; Izpisúa Belmonte, Juan Carlos ; Kintner, Chris</creatorcontrib><description>Chris Kintner and colleagues report that a
Xenopus
homolog of the transcription factor Foxj1 is sufficient to induce motile cilia by upregulating expression of genes encoding key components of the motile ciliary machinery. Similar findings are reported in a related study by Sudipto Roy and colleagues.
It has been proposed that ciliated cells that produce a leftward fluid flow mediate left-right patterning in many vertebrate embryos. The cilia on these cells combine features of primary sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue by analyzing the
Xenopus
and zebrafish homologs of Foxj1, a forkhead transcription factor necessary for ciliogenesis in multiciliated cells of the mouse. We show that the cilia that underlie left-right patterning on the
Xenopus
gastrocoel roof plate (GRP) and zebrafish Kupffer's vesicle are severely shortened or fail to form in Foxj1 morphants. We also show that misexpressing Foxj1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray analysis indicates that
Xenopus
Foxj1 induces the formation of cilia by upregulating the expression of motile cilia genes. These results indicate that Foxj1 is a critical determinant in the specification of cilia used in left-right patterning.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.267</identifier><identifier>PMID: 19011629</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Animals ; Anura ; Biomedical and Life Sciences ; Biomedicine ; Body Patterning ; Cancer Research ; Cilia - metabolism ; Cilia and ciliary motion ; Danio rerio ; DNA binding proteins ; Electron microscopes ; Embryos ; Epoxy resins ; Fluid flow ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; Freshwater ; Gene Function ; Genetic aspects ; Human Genetics ; Physiological aspects ; Proteins ; Transmission electron microscopy ; Xenopus ; Xenopus - embryology ; Xenopus - genetics ; Xenopus Proteins - genetics ; Xenopus Proteins - metabolism ; Zebra fish ; Zebrafish - embryology ; Zebrafish - genetics</subject><ispartof>Nature genetics, 2008-12, Vol.40 (12), p.1454-1460</ispartof><rights>Springer Nature America, Inc. 2008</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-b93bb4edb481287970ee581ade3f0079c9e6550ceded1801628deec1cdd34b903</citedby><cites>FETCH-LOGICAL-c655t-b93bb4edb481287970ee581ade3f0079c9e6550ceded1801628deec1cdd34b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.267$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.267$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19011629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stubbs, Jennifer L</creatorcontrib><creatorcontrib>Oishi, Isao</creatorcontrib><creatorcontrib>Izpisúa Belmonte, Juan Carlos</creatorcontrib><creatorcontrib>Kintner, Chris</creatorcontrib><title>The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Chris Kintner and colleagues report that a
Xenopus
homolog of the transcription factor Foxj1 is sufficient to induce motile cilia by upregulating expression of genes encoding key components of the motile ciliary machinery. Similar findings are reported in a related study by Sudipto Roy and colleagues.
It has been proposed that ciliated cells that produce a leftward fluid flow mediate left-right patterning in many vertebrate embryos. The cilia on these cells combine features of primary sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue by analyzing the
Xenopus
and zebrafish homologs of Foxj1, a forkhead transcription factor necessary for ciliogenesis in multiciliated cells of the mouse. We show that the cilia that underlie left-right patterning on the
Xenopus
gastrocoel roof plate (GRP) and zebrafish Kupffer's vesicle are severely shortened or fail to form in Foxj1 morphants. We also show that misexpressing Foxj1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray analysis indicates that
Xenopus
Foxj1 induces the formation of cilia by upregulating the expression of motile cilia genes. These results indicate that Foxj1 is a critical determinant in the specification of cilia used in left-right patterning.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Anura</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body Patterning</subject><subject>Cancer Research</subject><subject>Cilia - metabolism</subject><subject>Cilia and ciliary motion</subject><subject>Danio rerio</subject><subject>DNA binding proteins</subject><subject>Electron microscopes</subject><subject>Embryos</subject><subject>Epoxy resins</subject><subject>Fluid flow</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Freshwater</subject><subject>Gene Function</subject><subject>Genetic aspects</subject><subject>Human Genetics</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Transmission electron microscopy</subject><subject>Xenopus</subject><subject>Xenopus - embryology</subject><subject>Xenopus - genetics</subject><subject>Xenopus Proteins - genetics</subject><subject>Xenopus Proteins - metabolism</subject><subject>Zebra fish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNktFqFDEUhoMotq76CBIUFC9mTWYymeRGKMVqoVDQVrwLmeTMbLazyZjMSOvTm7KLdYugBJKQ850_J38OQs8pWVJSiXe-X5a8eYAOac14QRsqHuY94bRgpOIH6ElKa0IoY0Q8RgdUEkp5KQ_R5cUKcBfi1Qq0xWMMEziPT8L1muI0gnGdg4R9sFAM7gqwcYPTOCPfwIdxTlh7i39CG3Xn0grDpo03IT1Fjzo9JHi2Wxfo8uTDxfGn4uz84-nx0VlheF1PRSurtmVgWyZoKRrZEIBaUG2h6ghppJGQOWLAgqWC5IqFBTDUWFuxVpJqgd5vdce53YA14KeoBzVGt9HxRgXt1H7Eu5Xqww_FOBMNrbPA651ADN9nSJPauGRgGLSHMCfFpSgZkc0_QSprXpeMZvDlPXAd5uizC6osS16xKk8L9GoL9XoA5XwXcnXmVlEdUVmyfCtnmVr-hcrDwsaZ4KFz-Xwv4e1eQmYmuJ56PaekTr98_n_2_Os-u3u8iSGlCN1vhylRt-2nfK9y-2XwxZ__cYft-i0Db7ZAyiHfQ7xz557ULwgI37E</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Stubbs, Jennifer L</creator><creator>Oishi, Isao</creator><creator>Izpisúa Belmonte, Juan Carlos</creator><creator>Kintner, Chris</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos</title><author>Stubbs, Jennifer L ; Oishi, Isao ; Izpisúa Belmonte, Juan Carlos ; Kintner, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-b93bb4edb481287970ee581ade3f0079c9e6550ceded1801628deec1cdd34b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Anura</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body Patterning</topic><topic>Cancer Research</topic><topic>Cilia - metabolism</topic><topic>Cilia and ciliary motion</topic><topic>Danio rerio</topic><topic>DNA binding proteins</topic><topic>Electron microscopes</topic><topic>Embryos</topic><topic>Epoxy resins</topic><topic>Fluid flow</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Freshwater</topic><topic>Gene Function</topic><topic>Genetic aspects</topic><topic>Human Genetics</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Transmission electron microscopy</topic><topic>Xenopus</topic><topic>Xenopus - embryology</topic><topic>Xenopus - genetics</topic><topic>Xenopus Proteins - genetics</topic><topic>Xenopus Proteins - metabolism</topic><topic>Zebra fish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stubbs, Jennifer L</creatorcontrib><creatorcontrib>Oishi, Isao</creatorcontrib><creatorcontrib>Izpisúa Belmonte, Juan Carlos</creatorcontrib><creatorcontrib>Kintner, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stubbs, Jennifer L</au><au>Oishi, Isao</au><au>Izpisúa Belmonte, Juan Carlos</au><au>Kintner, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>40</volume><issue>12</issue><spage>1454</spage><epage>1460</epage><pages>1454-1460</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Chris Kintner and colleagues report that a
Xenopus
homolog of the transcription factor Foxj1 is sufficient to induce motile cilia by upregulating expression of genes encoding key components of the motile ciliary machinery. Similar findings are reported in a related study by Sudipto Roy and colleagues.
It has been proposed that ciliated cells that produce a leftward fluid flow mediate left-right patterning in many vertebrate embryos. The cilia on these cells combine features of primary sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue by analyzing the
Xenopus
and zebrafish homologs of Foxj1, a forkhead transcription factor necessary for ciliogenesis in multiciliated cells of the mouse. We show that the cilia that underlie left-right patterning on the
Xenopus
gastrocoel roof plate (GRP) and zebrafish Kupffer's vesicle are severely shortened or fail to form in Foxj1 morphants. We also show that misexpressing Foxj1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray analysis indicates that
Xenopus
Foxj1 induces the formation of cilia by upregulating the expression of motile cilia genes. These results indicate that Foxj1 is a critical determinant in the specification of cilia used in left-right patterning.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>19011629</pmid><doi>10.1038/ng.267</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2008-12, Vol.40 (12), p.1454-1460 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4648715 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Animal Genetics and Genomics Animals Anura Biomedical and Life Sciences Biomedicine Body Patterning Cancer Research Cilia - metabolism Cilia and ciliary motion Danio rerio DNA binding proteins Electron microscopes Embryos Epoxy resins Fluid flow Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism Freshwater Gene Function Genetic aspects Human Genetics Physiological aspects Proteins Transmission electron microscopy Xenopus Xenopus - embryology Xenopus - genetics Xenopus Proteins - genetics Xenopus Proteins - metabolism Zebra fish Zebrafish - embryology Zebrafish - genetics |
title | The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20forkhead%20protein%20Foxj1%20specifies%20node-like%20cilia%20in%20Xenopus%20and%20zebrafish%20embryos&rft.jtitle=Nature%20genetics&rft.au=Stubbs,%20Jennifer%20L&rft.date=2008-12-01&rft.volume=40&rft.issue=12&rft.spage=1454&rft.epage=1460&rft.pages=1454-1460&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.267&rft_dat=%3Cgale_pubme%3EA192498264%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222634326&rft_id=info:pmid/19011629&rft_galeid=A192498264&rfr_iscdi=true |