Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface
The interface between the two band insulators SrTiO 3 and LaAlO 3 has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature, T c , that can be tuned using gate bias V g , which controls the number of electrons added or removed from the...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-09, Vol.6 (1), p.8239-8239, Article 8239 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8239 |
---|---|
container_issue | 1 |
container_start_page | 8239 |
container_title | Nature communications |
container_volume | 6 |
creator | Maniv, E. Shalom, M. Ben Ron, A. Mograbi, M. Palevski, A. Goldstein, M. Dagan, Y. |
description | The interface between the two band insulators SrTiO
3
and LaAlO
3
has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature,
T
c
, that can be tuned using gate bias
V
g
, which controls the number of electrons added or removed from the interface. The gate bias–temperature (
V
g
,
T
) phase diagram is characterized by a dome-shaped region where superconductivity occurs, that is,
T
c
has a non-monotonic dependence on
V
g
, similar to many unconventional superconductors. Here, we report, the frequency of the quantum resistance-oscillations versus inverse magnetic field for various
V
g
. This frequency follows the same non-monotonic behaviour as
T
c
; a similar trend is seen in the low field limit of the Hall coefficient. We theoretically show that electronic correlations result in a non-monotonic population of the mobile band, which can account for the experimental behaviour of the normal transport properties and the superconducting dome.
The interface between SrTiO
3
and LaAlO
3
has the properties of a superconducting two-dimensional electron gas. Here, the authors study the band structure of the interface and found that the population of the mobile band and its density of states are non-monotonic functions of the chemical potential. |
doi_str_mv | 10.1038/ncomms9239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4647855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1711537202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-b927755b047c39d3474418b104a4e6b91ca160f6cd7ccde2d1cf92152190c76a3</originalsourceid><addsrcrecordid>eNplkU1r3DAQhk1paUKaS35AEe2lpGyiL1vWJRBC-gELe0hyFvJ4vKtgS1tJLvTfV8sm6bbVZSTm4R3N-1bVGaMXjIr20kOYpqS50K-qY04lWzDFxeuD-1F1mtIjLUdo1kr5tjrijag1p81xBXc5Br8mEGLE0WYXfCI4zuB6m5HkDZYXwg5yQFKOM-Q5IrG-J9uNTUh6Z9fRTiQMZGmvx5W4vIv3biWI8xnjYAHfVW8GOyY8faon1cOX2_ubb4vl6uv3m-vlAmpR50WnuVJ13VGpQOheSCUlaztGpZXYdJqBZQ0dGugVQI-8ZzBozmrONAXVWHFSXe11t3M3YQ_oc7Sj2UY32fjLBOvM3x3vNmYdfhrZSNXWdRH4sBcIKTuTwGWEDQTviwGGNVwWCwv06WlKDD9mTNlMLgGOo_UY5mSYYqwWilNe0I__oI9hjr54sKOobpuWy0Kd7ymIIaWIw8uPGTW7jM2fjAv8_nDHF_Q50QJ83gOptPwa48HM_-V-A9H1sZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710986824</pqid></control><display><type>article</type><title>Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Maniv, E. ; Shalom, M. Ben ; Ron, A. ; Mograbi, M. ; Palevski, A. ; Goldstein, M. ; Dagan, Y.</creator><creatorcontrib>Maniv, E. ; Shalom, M. Ben ; Ron, A. ; Mograbi, M. ; Palevski, A. ; Goldstein, M. ; Dagan, Y. ; Tel-Aviv Univ. (Israel)</creatorcontrib><description>The interface between the two band insulators SrTiO
3
and LaAlO
3
has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature,
T
c
, that can be tuned using gate bias
V
g
, which controls the number of electrons added or removed from the interface. The gate bias–temperature (
V
g
,
T
) phase diagram is characterized by a dome-shaped region where superconductivity occurs, that is,
T
c
has a non-monotonic dependence on
V
g
, similar to many unconventional superconductors. Here, we report, the frequency of the quantum resistance-oscillations versus inverse magnetic field for various
V
g
. This frequency follows the same non-monotonic behaviour as
T
c
; a similar trend is seen in the low field limit of the Hall coefficient. We theoretically show that electronic correlations result in a non-monotonic population of the mobile band, which can account for the experimental behaviour of the normal transport properties and the superconducting dome.
The interface between SrTiO
3
and LaAlO
3
has the properties of a superconducting two-dimensional electron gas. Here, the authors study the band structure of the interface and found that the population of the mobile band and its density of states are non-monotonic functions of the chemical potential.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9239</identifier><identifier>PMID: 26359206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/119/1003 ; 639/766/25 ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science & Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-09, Vol.6 (1), p.8239-8239, Article 8239</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-b927755b047c39d3474418b104a4e6b91ca160f6cd7ccde2d1cf92152190c76a3</citedby><cites>FETCH-LOGICAL-c535t-b927755b047c39d3474418b104a4e6b91ca160f6cd7ccde2d1cf92152190c76a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647855/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647855/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26359206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624003$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maniv, E.</creatorcontrib><creatorcontrib>Shalom, M. Ben</creatorcontrib><creatorcontrib>Ron, A.</creatorcontrib><creatorcontrib>Mograbi, M.</creatorcontrib><creatorcontrib>Palevski, A.</creatorcontrib><creatorcontrib>Goldstein, M.</creatorcontrib><creatorcontrib>Dagan, Y.</creatorcontrib><creatorcontrib>Tel-Aviv Univ. (Israel)</creatorcontrib><title>Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The interface between the two band insulators SrTiO
3
and LaAlO
3
has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature,
T
c
, that can be tuned using gate bias
V
g
, which controls the number of electrons added or removed from the interface. The gate bias–temperature (
V
g
,
T
) phase diagram is characterized by a dome-shaped region where superconductivity occurs, that is,
T
c
has a non-monotonic dependence on
V
g
, similar to many unconventional superconductors. Here, we report, the frequency of the quantum resistance-oscillations versus inverse magnetic field for various
V
g
. This frequency follows the same non-monotonic behaviour as
T
c
; a similar trend is seen in the low field limit of the Hall coefficient. We theoretically show that electronic correlations result in a non-monotonic population of the mobile band, which can account for the experimental behaviour of the normal transport properties and the superconducting dome.
The interface between SrTiO
3
and LaAlO
3
has the properties of a superconducting two-dimensional electron gas. Here, the authors study the band structure of the interface and found that the population of the mobile band and its density of states are non-monotonic functions of the chemical potential.</description><subject>142/126</subject><subject>639/301/119/1003</subject><subject>639/766/25</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1r3DAQhk1paUKaS35AEe2lpGyiL1vWJRBC-gELe0hyFvJ4vKtgS1tJLvTfV8sm6bbVZSTm4R3N-1bVGaMXjIr20kOYpqS50K-qY04lWzDFxeuD-1F1mtIjLUdo1kr5tjrijag1p81xBXc5Br8mEGLE0WYXfCI4zuB6m5HkDZYXwg5yQFKOM-Q5IrG-J9uNTUh6Z9fRTiQMZGmvx5W4vIv3biWI8xnjYAHfVW8GOyY8faon1cOX2_ubb4vl6uv3m-vlAmpR50WnuVJ13VGpQOheSCUlaztGpZXYdJqBZQ0dGugVQI-8ZzBozmrONAXVWHFSXe11t3M3YQ_oc7Sj2UY32fjLBOvM3x3vNmYdfhrZSNXWdRH4sBcIKTuTwGWEDQTviwGGNVwWCwv06WlKDD9mTNlMLgGOo_UY5mSYYqwWilNe0I__oI9hjr54sKOobpuWy0Kd7ymIIaWIw8uPGTW7jM2fjAv8_nDHF_Q50QJ83gOptPwa48HM_-V-A9H1sZQ</recordid><startdate>20150911</startdate><enddate>20150911</enddate><creator>Maniv, E.</creator><creator>Shalom, M. Ben</creator><creator>Ron, A.</creator><creator>Mograbi, M.</creator><creator>Palevski, A.</creator><creator>Goldstein, M.</creator><creator>Dagan, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150911</creationdate><title>Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface</title><author>Maniv, E. ; Shalom, M. Ben ; Ron, A. ; Mograbi, M. ; Palevski, A. ; Goldstein, M. ; Dagan, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-b927755b047c39d3474418b104a4e6b91ca160f6cd7ccde2d1cf92152190c76a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>142/126</topic><topic>639/301/119/1003</topic><topic>639/766/25</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniv, E.</creatorcontrib><creatorcontrib>Shalom, M. Ben</creatorcontrib><creatorcontrib>Ron, A.</creatorcontrib><creatorcontrib>Mograbi, M.</creatorcontrib><creatorcontrib>Palevski, A.</creatorcontrib><creatorcontrib>Goldstein, M.</creatorcontrib><creatorcontrib>Dagan, Y.</creatorcontrib><creatorcontrib>Tel-Aviv Univ. (Israel)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maniv, E.</au><au>Shalom, M. Ben</au><au>Ron, A.</au><au>Mograbi, M.</au><au>Palevski, A.</au><au>Goldstein, M.</au><au>Dagan, Y.</au><aucorp>Tel-Aviv Univ. (Israel)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-09-11</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8239</spage><epage>8239</epage><pages>8239-8239</pages><artnum>8239</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The interface between the two band insulators SrTiO
3
and LaAlO
3
has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature,
T
c
, that can be tuned using gate bias
V
g
, which controls the number of electrons added or removed from the interface. The gate bias–temperature (
V
g
,
T
) phase diagram is characterized by a dome-shaped region where superconductivity occurs, that is,
T
c
has a non-monotonic dependence on
V
g
, similar to many unconventional superconductors. Here, we report, the frequency of the quantum resistance-oscillations versus inverse magnetic field for various
V
g
. This frequency follows the same non-monotonic behaviour as
T
c
; a similar trend is seen in the low field limit of the Hall coefficient. We theoretically show that electronic correlations result in a non-monotonic population of the mobile band, which can account for the experimental behaviour of the normal transport properties and the superconducting dome.
The interface between SrTiO
3
and LaAlO
3
has the properties of a superconducting two-dimensional electron gas. Here, the authors study the band structure of the interface and found that the population of the mobile band and its density of states are non-monotonic functions of the chemical potential.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26359206</pmid><doi>10.1038/ncomms9239</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-09, Vol.6 (1), p.8239-8239, Article 8239 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4647855 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection |
subjects | 142/126 639/301/119/1003 639/766/25 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Humanities and Social Sciences multidisciplinary Science Science & Technology - Other Topics Science (multidisciplinary) |
title | Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20correlations%20elucidate%20the%20electronic%20structure%20and%20phase%20diagram%20of%20LaAlO3/SrTiO3%20interface&rft.jtitle=Nature%20communications&rft.au=Maniv,%20E.&rft.aucorp=Tel-Aviv%20Univ.%20(Israel)&rft.date=2015-09-11&rft.volume=6&rft.issue=1&rft.spage=8239&rft.epage=8239&rft.pages=8239-8239&rft.artnum=8239&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9239&rft_dat=%3Cproquest_pubme%3E1711537202%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710986824&rft_id=info:pmid/26359206&rfr_iscdi=true |