Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2

Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2015-07, Vol.1 (6), p.e1500168-e1500168
Hauptverfasser: Vaskivskyi, Igor, Gospodaric, Jan, Brazovskii, Serguei, Svetin, Damjan, Sutar, Petra, Goreshnik, Evgeny, Mihailovic, Ian A, Mertelj, Tomaz, Mihailovic, Dragan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1500168
container_issue 6
container_start_page e1500168
container_title Science advances
container_volume 1
creator Vaskivskyi, Igor
Gospodaric, Jan
Brazovskii, Serguei
Svetin, Damjan
Sutar, Petra
Goreshnik, Evgeny
Mihailovic, Ian A
Mertelj, Tomaz
Mihailovic, Dragan
description Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.
doi_str_mv 10.1126/sciadv.1500168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1749601129</sourcerecordid><originalsourceid>FETCH-LOGICAL-j332t-df2fe555dccb8550d1c84bbdb31afa4fee09737721add2e2fe55254a1b50d6b73</originalsourceid><addsrcrecordid>eNpVkM9LwzAUx4MobsxdPUqOXjqbtEnbiyDDXzDw4DyH1ybdMtJka9Kh_71B55in93jvw_fL94vQNUlnhFB-5xsNcj8jLE0JL8_QmGYFSyjLy_OTfYSm3m_SyOScM1JdohHlPCWUlGMk5s6G3hmj7QqHtcKdCmCS4BJt_WAguB73ysAnBO0sdu0R8gFqo_BaS6ks3g1gw9DheA0Ka4vJMlnCO71CFy0Yr6aHOUEfT4_L-UuyeHt-nT8skk2W0ZDIlraKMSabpi4ZSyVpyryuZZ0RaCFvlUqrIisKSkBKqn7gmA1IHVleF9kE3f_qboe6U7JRMRUYse11B_2XcKDF_4_Va7Fye5HznBcljQK3B4He7Qblg-i0b5QxYJUbvCBFXsXSCK0ienPqdTT5azX7BrxBfaE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749601129</pqid></control><display><type>article</type><title>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vaskivskyi, Igor ; Gospodaric, Jan ; Brazovskii, Serguei ; Svetin, Damjan ; Sutar, Petra ; Goreshnik, Evgeny ; Mihailovic, Ian A ; Mertelj, Tomaz ; Mihailovic, Dragan</creator><creatorcontrib>Vaskivskyi, Igor ; Gospodaric, Jan ; Brazovskii, Serguei ; Svetin, Damjan ; Sutar, Petra ; Goreshnik, Evgeny ; Mihailovic, Ian A ; Mertelj, Tomaz ; Mihailovic, Dragan</creatorcontrib><description>Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500168</identifier><identifier>PMID: 26601218</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Quantum Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2015-07, Vol.1 (6), p.e1500168-e1500168</ispartof><rights>Copyright © 2015, The Authors 2015 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646782/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646782/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26601218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaskivskyi, Igor</creatorcontrib><creatorcontrib>Gospodaric, Jan</creatorcontrib><creatorcontrib>Brazovskii, Serguei</creatorcontrib><creatorcontrib>Svetin, Damjan</creatorcontrib><creatorcontrib>Sutar, Petra</creatorcontrib><creatorcontrib>Goreshnik, Evgeny</creatorcontrib><creatorcontrib>Mihailovic, Ian A</creatorcontrib><creatorcontrib>Mertelj, Tomaz</creatorcontrib><creatorcontrib>Mihailovic, Dragan</creatorcontrib><title>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.</description><subject>Quantum Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkM9LwzAUx4MobsxdPUqOXjqbtEnbiyDDXzDw4DyH1ybdMtJka9Kh_71B55in93jvw_fL94vQNUlnhFB-5xsNcj8jLE0JL8_QmGYFSyjLy_OTfYSm3m_SyOScM1JdohHlPCWUlGMk5s6G3hmj7QqHtcKdCmCS4BJt_WAguB73ysAnBO0sdu0R8gFqo_BaS6ks3g1gw9DheA0Ka4vJMlnCO71CFy0Yr6aHOUEfT4_L-UuyeHt-nT8skk2W0ZDIlraKMSabpi4ZSyVpyryuZZ0RaCFvlUqrIisKSkBKqn7gmA1IHVleF9kE3f_qboe6U7JRMRUYse11B_2XcKDF_4_Va7Fye5HznBcljQK3B4He7Qblg-i0b5QxYJUbvCBFXsXSCK0ienPqdTT5azX7BrxBfaE</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Vaskivskyi, Igor</creator><creator>Gospodaric, Jan</creator><creator>Brazovskii, Serguei</creator><creator>Svetin, Damjan</creator><creator>Sutar, Petra</creator><creator>Goreshnik, Evgeny</creator><creator>Mihailovic, Ian A</creator><creator>Mertelj, Tomaz</creator><creator>Mihailovic, Dragan</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</title><author>Vaskivskyi, Igor ; Gospodaric, Jan ; Brazovskii, Serguei ; Svetin, Damjan ; Sutar, Petra ; Goreshnik, Evgeny ; Mihailovic, Ian A ; Mertelj, Tomaz ; Mihailovic, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j332t-df2fe555dccb8550d1c84bbdb31afa4fee09737721add2e2fe55254a1b50d6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Quantum Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaskivskyi, Igor</creatorcontrib><creatorcontrib>Gospodaric, Jan</creatorcontrib><creatorcontrib>Brazovskii, Serguei</creatorcontrib><creatorcontrib>Svetin, Damjan</creatorcontrib><creatorcontrib>Sutar, Petra</creatorcontrib><creatorcontrib>Goreshnik, Evgeny</creatorcontrib><creatorcontrib>Mihailovic, Ian A</creatorcontrib><creatorcontrib>Mertelj, Tomaz</creatorcontrib><creatorcontrib>Mihailovic, Dragan</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaskivskyi, Igor</au><au>Gospodaric, Jan</au><au>Brazovskii, Serguei</au><au>Svetin, Damjan</au><au>Sutar, Petra</au><au>Goreshnik, Evgeny</au><au>Mihailovic, Ian A</au><au>Mertelj, Tomaz</au><au>Mihailovic, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>1</volume><issue>6</issue><spage>e1500168</spage><epage>e1500168</epage><pages>e1500168-e1500168</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26601218</pmid><doi>10.1126/sciadv.1500168</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2015-07, Vol.1 (6), p.e1500168-e1500168
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646782
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Quantum Physics
SciAdv r-articles
title Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20metal-to-insulator%20relaxation%20of%20the%20metastable%20hidden%20quantum%20state%20in%201T-TaS2&rft.jtitle=Science%20advances&rft.au=Vaskivskyi,%20Igor&rft.date=2015-07-01&rft.volume=1&rft.issue=6&rft.spage=e1500168&rft.epage=e1500168&rft.pages=e1500168-e1500168&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500168&rft_dat=%3Cproquest_pubme%3E1749601129%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749601129&rft_id=info:pmid/26601218&rfr_iscdi=true