Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2
Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave...
Gespeichert in:
Veröffentlicht in: | Science advances 2015-07, Vol.1 (6), p.e1500168-e1500168 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1500168 |
---|---|
container_issue | 6 |
container_start_page | e1500168 |
container_title | Science advances |
container_volume | 1 |
creator | Vaskivskyi, Igor Gospodaric, Jan Brazovskii, Serguei Svetin, Damjan Sutar, Petra Goreshnik, Evgeny Mihailovic, Ian A Mertelj, Tomaz Mihailovic, Dragan |
description | Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance. |
doi_str_mv | 10.1126/sciadv.1500168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1749601129</sourcerecordid><originalsourceid>FETCH-LOGICAL-j332t-df2fe555dccb8550d1c84bbdb31afa4fee09737721add2e2fe55254a1b50d6b73</originalsourceid><addsrcrecordid>eNpVkM9LwzAUx4MobsxdPUqOXjqbtEnbiyDDXzDw4DyH1ybdMtJka9Kh_71B55in93jvw_fL94vQNUlnhFB-5xsNcj8jLE0JL8_QmGYFSyjLy_OTfYSm3m_SyOScM1JdohHlPCWUlGMk5s6G3hmj7QqHtcKdCmCS4BJt_WAguB73ysAnBO0sdu0R8gFqo_BaS6ks3g1gw9DheA0Ka4vJMlnCO71CFy0Yr6aHOUEfT4_L-UuyeHt-nT8skk2W0ZDIlraKMSabpi4ZSyVpyryuZZ0RaCFvlUqrIisKSkBKqn7gmA1IHVleF9kE3f_qboe6U7JRMRUYse11B_2XcKDF_4_Va7Fye5HznBcljQK3B4He7Qblg-i0b5QxYJUbvCBFXsXSCK0ienPqdTT5azX7BrxBfaE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749601129</pqid></control><display><type>article</type><title>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vaskivskyi, Igor ; Gospodaric, Jan ; Brazovskii, Serguei ; Svetin, Damjan ; Sutar, Petra ; Goreshnik, Evgeny ; Mihailovic, Ian A ; Mertelj, Tomaz ; Mihailovic, Dragan</creator><creatorcontrib>Vaskivskyi, Igor ; Gospodaric, Jan ; Brazovskii, Serguei ; Svetin, Damjan ; Sutar, Petra ; Goreshnik, Evgeny ; Mihailovic, Ian A ; Mertelj, Tomaz ; Mihailovic, Dragan</creatorcontrib><description>Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1500168</identifier><identifier>PMID: 26601218</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Quantum Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2015-07, Vol.1 (6), p.e1500168-e1500168</ispartof><rights>Copyright © 2015, The Authors 2015 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646782/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646782/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26601218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaskivskyi, Igor</creatorcontrib><creatorcontrib>Gospodaric, Jan</creatorcontrib><creatorcontrib>Brazovskii, Serguei</creatorcontrib><creatorcontrib>Svetin, Damjan</creatorcontrib><creatorcontrib>Sutar, Petra</creatorcontrib><creatorcontrib>Goreshnik, Evgeny</creatorcontrib><creatorcontrib>Mihailovic, Ian A</creatorcontrib><creatorcontrib>Mertelj, Tomaz</creatorcontrib><creatorcontrib>Mihailovic, Dragan</creatorcontrib><title>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.</description><subject>Quantum Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkM9LwzAUx4MobsxdPUqOXjqbtEnbiyDDXzDw4DyH1ybdMtJka9Kh_71B55in93jvw_fL94vQNUlnhFB-5xsNcj8jLE0JL8_QmGYFSyjLy_OTfYSm3m_SyOScM1JdohHlPCWUlGMk5s6G3hmj7QqHtcKdCmCS4BJt_WAguB73ysAnBO0sdu0R8gFqo_BaS6ks3g1gw9DheA0Ka4vJMlnCO71CFy0Yr6aHOUEfT4_L-UuyeHt-nT8skk2W0ZDIlraKMSabpi4ZSyVpyryuZZ0RaCFvlUqrIisKSkBKqn7gmA1IHVleF9kE3f_qboe6U7JRMRUYse11B_2XcKDF_4_Va7Fye5HznBcljQK3B4He7Qblg-i0b5QxYJUbvCBFXsXSCK0ienPqdTT5azX7BrxBfaE</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Vaskivskyi, Igor</creator><creator>Gospodaric, Jan</creator><creator>Brazovskii, Serguei</creator><creator>Svetin, Damjan</creator><creator>Sutar, Petra</creator><creator>Goreshnik, Evgeny</creator><creator>Mihailovic, Ian A</creator><creator>Mertelj, Tomaz</creator><creator>Mihailovic, Dragan</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150701</creationdate><title>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</title><author>Vaskivskyi, Igor ; Gospodaric, Jan ; Brazovskii, Serguei ; Svetin, Damjan ; Sutar, Petra ; Goreshnik, Evgeny ; Mihailovic, Ian A ; Mertelj, Tomaz ; Mihailovic, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j332t-df2fe555dccb8550d1c84bbdb31afa4fee09737721add2e2fe55254a1b50d6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Quantum Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaskivskyi, Igor</creatorcontrib><creatorcontrib>Gospodaric, Jan</creatorcontrib><creatorcontrib>Brazovskii, Serguei</creatorcontrib><creatorcontrib>Svetin, Damjan</creatorcontrib><creatorcontrib>Sutar, Petra</creatorcontrib><creatorcontrib>Goreshnik, Evgeny</creatorcontrib><creatorcontrib>Mihailovic, Ian A</creatorcontrib><creatorcontrib>Mertelj, Tomaz</creatorcontrib><creatorcontrib>Mihailovic, Dragan</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaskivskyi, Igor</au><au>Gospodaric, Jan</au><au>Brazovskii, Serguei</au><au>Svetin, Damjan</au><au>Sutar, Petra</au><au>Goreshnik, Evgeny</au><au>Mihailovic, Ian A</au><au>Mertelj, Tomaz</au><au>Mihailovic, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>1</volume><issue>6</issue><spage>e1500168</spage><epage>e1500168</epage><pages>e1500168-e1500168</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26601218</pmid><doi>10.1126/sciadv.1500168</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2015-07, Vol.1 (6), p.e1500168-e1500168 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646782 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Quantum Physics SciAdv r-articles |
title | Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20metal-to-insulator%20relaxation%20of%20the%20metastable%20hidden%20quantum%20state%20in%201T-TaS2&rft.jtitle=Science%20advances&rft.au=Vaskivskyi,%20Igor&rft.date=2015-07-01&rft.volume=1&rft.issue=6&rft.spage=e1500168&rft.epage=e1500168&rft.pages=e1500168-e1500168&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1500168&rft_dat=%3Cproquest_pubme%3E1749601129%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749601129&rft_id=info:pmid/26601218&rfr_iscdi=true |