Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells
NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are th...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2015-11, Vol.290 (45), p.27124-27137 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27137 |
---|---|
container_issue | 45 |
container_start_page | 27124 |
container_title | The Journal of biological chemistry |
container_volume | 290 |
creator | Kulikova, Veronika Shabalin, Konstantin Nerinovski, Kirill Dölle, Christian Niere, Marc Yakimov, Alexander Redpath, Philip Khodorkovskiy, Mikhail Migaud, Marie E. Ziegler, Mathias Nikiforov, Andrey |
description | NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.
Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells.
Results: Human cells generate and release NR and NAR.
Conclusion: NR and NAR are authentic intermediates of human NAD metabolism.
Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors. |
doi_str_mv | 10.1074/jbc.M115.664458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820494797</els_id><sourcerecordid>1731782754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</originalsourceid><addsrcrecordid>eNp1kc1PHCEYh4lpo-vH2VvDsQdnheFzLk0226pN1DZGExMPhGHeqdhZWGHGxP--mLWmPcgBDu_DD973QeiQkjklih8_tG5-QamYS8m50FtoRolmFRP09gOaEVLTqqmF3kG7OT-QsnhDt9FOLZkWDdUzdHcKAZIdfQxH-AoGsBmOsA0dvlmP9jfg2OPxHvDl4iv-mcBNKceEL72Low_e4YXzHb7ybcy-A9w-47NpZQNewjDkffSxt0OGg9dzD92cfLtenlXnP06_LxfnlROkGatGqZ4QSySxneBEacZbZTXVTnIAJoFDy3jvLNTUKdpKLmrC2rILqBuh2B76ssldT-0KOgdhTHYw6-RXNj2baL35vxL8vfkVnwyXXLJGlIDPrwEpPk6QR7Py2ZUWbIA4ZUMVo0rXSvCCHm9Ql2LOCfq3ZygxL0pMUWJelJiNknLj07-_e-P_OihAswGgzOjJQzLZeQgOOl8GPpou-nfD_wDa9Zot</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731782754</pqid></control><display><type>article</type><title>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kulikova, Veronika ; Shabalin, Konstantin ; Nerinovski, Kirill ; Dölle, Christian ; Niere, Marc ; Yakimov, Alexander ; Redpath, Philip ; Khodorkovskiy, Mikhail ; Migaud, Marie E. ; Ziegler, Mathias ; Nikiforov, Andrey</creator><creatorcontrib>Kulikova, Veronika ; Shabalin, Konstantin ; Nerinovski, Kirill ; Dölle, Christian ; Niere, Marc ; Yakimov, Alexander ; Redpath, Philip ; Khodorkovskiy, Mikhail ; Migaud, Marie E. ; Ziegler, Mathias ; Nikiforov, Andrey</creatorcontrib><description>NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.
Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells.
Results: Human cells generate and release NR and NAR.
Conclusion: NR and NAR are authentic intermediates of human NAD metabolism.
Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.664458</identifier><identifier>PMID: 26385918</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5'-Nucleotidase - metabolism ; 5′-nucleotidase ; Cytokines - metabolism ; HEK293 Cells ; Hep G2 Cells ; Humans ; Kinetics ; Magnetic Resonance Spectroscopy ; Metabolic Networks and Pathways ; Metabolism ; molecular cell biology ; NAD - biosynthesis ; Niacin - metabolism ; Niacinamide - analogs & derivatives ; Niacinamide - biosynthesis ; Niacinamide - metabolism ; nicotinamide ; nicotinamide adenine dinucleotide (NAD) ; Nicotinamide Phosphoribosyltransferase - metabolism ; nicotinic acid ; nicotinic acid riboside ; nucleoside/nucleotide metabolism ; Pentosyltransferases - metabolism ; Phosphorylation ; Recombinant Proteins - metabolism ; Ribonucleosides - biosynthesis ; Ribonucleosides - metabolism ; Signal Transduction ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2015-11, Vol.290 (45), p.27124-27137</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</citedby><cites>FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646395/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646395/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26385918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulikova, Veronika</creatorcontrib><creatorcontrib>Shabalin, Konstantin</creatorcontrib><creatorcontrib>Nerinovski, Kirill</creatorcontrib><creatorcontrib>Dölle, Christian</creatorcontrib><creatorcontrib>Niere, Marc</creatorcontrib><creatorcontrib>Yakimov, Alexander</creatorcontrib><creatorcontrib>Redpath, Philip</creatorcontrib><creatorcontrib>Khodorkovskiy, Mikhail</creatorcontrib><creatorcontrib>Migaud, Marie E.</creatorcontrib><creatorcontrib>Ziegler, Mathias</creatorcontrib><creatorcontrib>Nikiforov, Andrey</creatorcontrib><title>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.
Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells.
Results: Human cells generate and release NR and NAR.
Conclusion: NR and NAR are authentic intermediates of human NAD metabolism.
Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.</description><subject>5'-Nucleotidase - metabolism</subject><subject>5′-nucleotidase</subject><subject>Cytokines - metabolism</subject><subject>HEK293 Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>molecular cell biology</subject><subject>NAD - biosynthesis</subject><subject>Niacin - metabolism</subject><subject>Niacinamide - analogs & derivatives</subject><subject>Niacinamide - biosynthesis</subject><subject>Niacinamide - metabolism</subject><subject>nicotinamide</subject><subject>nicotinamide adenine dinucleotide (NAD)</subject><subject>Nicotinamide Phosphoribosyltransferase - metabolism</subject><subject>nicotinic acid</subject><subject>nicotinic acid riboside</subject><subject>nucleoside/nucleotide metabolism</subject><subject>Pentosyltransferases - metabolism</subject><subject>Phosphorylation</subject><subject>Recombinant Proteins - metabolism</subject><subject>Ribonucleosides - biosynthesis</subject><subject>Ribonucleosides - metabolism</subject><subject>Signal Transduction</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1PHCEYh4lpo-vH2VvDsQdnheFzLk0226pN1DZGExMPhGHeqdhZWGHGxP--mLWmPcgBDu_DD973QeiQkjklih8_tG5-QamYS8m50FtoRolmFRP09gOaEVLTqqmF3kG7OT-QsnhDt9FOLZkWDdUzdHcKAZIdfQxH-AoGsBmOsA0dvlmP9jfg2OPxHvDl4iv-mcBNKceEL72Low_e4YXzHb7ybcy-A9w-47NpZQNewjDkffSxt0OGg9dzD92cfLtenlXnP06_LxfnlROkGatGqZ4QSySxneBEacZbZTXVTnIAJoFDy3jvLNTUKdpKLmrC2rILqBuh2B76ssldT-0KOgdhTHYw6-RXNj2baL35vxL8vfkVnwyXXLJGlIDPrwEpPk6QR7Py2ZUWbIA4ZUMVo0rXSvCCHm9Ql2LOCfq3ZygxL0pMUWJelJiNknLj07-_e-P_OihAswGgzOjJQzLZeQgOOl8GPpou-nfD_wDa9Zot</recordid><startdate>20151106</startdate><enddate>20151106</enddate><creator>Kulikova, Veronika</creator><creator>Shabalin, Konstantin</creator><creator>Nerinovski, Kirill</creator><creator>Dölle, Christian</creator><creator>Niere, Marc</creator><creator>Yakimov, Alexander</creator><creator>Redpath, Philip</creator><creator>Khodorkovskiy, Mikhail</creator><creator>Migaud, Marie E.</creator><creator>Ziegler, Mathias</creator><creator>Nikiforov, Andrey</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151106</creationdate><title>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</title><author>Kulikova, Veronika ; Shabalin, Konstantin ; Nerinovski, Kirill ; Dölle, Christian ; Niere, Marc ; Yakimov, Alexander ; Redpath, Philip ; Khodorkovskiy, Mikhail ; Migaud, Marie E. ; Ziegler, Mathias ; Nikiforov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>5'-Nucleotidase - metabolism</topic><topic>5′-nucleotidase</topic><topic>Cytokines - metabolism</topic><topic>HEK293 Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>molecular cell biology</topic><topic>NAD - biosynthesis</topic><topic>Niacin - metabolism</topic><topic>Niacinamide - analogs & derivatives</topic><topic>Niacinamide - biosynthesis</topic><topic>Niacinamide - metabolism</topic><topic>nicotinamide</topic><topic>nicotinamide adenine dinucleotide (NAD)</topic><topic>Nicotinamide Phosphoribosyltransferase - metabolism</topic><topic>nicotinic acid</topic><topic>nicotinic acid riboside</topic><topic>nucleoside/nucleotide metabolism</topic><topic>Pentosyltransferases - metabolism</topic><topic>Phosphorylation</topic><topic>Recombinant Proteins - metabolism</topic><topic>Ribonucleosides - biosynthesis</topic><topic>Ribonucleosides - metabolism</topic><topic>Signal Transduction</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikova, Veronika</creatorcontrib><creatorcontrib>Shabalin, Konstantin</creatorcontrib><creatorcontrib>Nerinovski, Kirill</creatorcontrib><creatorcontrib>Dölle, Christian</creatorcontrib><creatorcontrib>Niere, Marc</creatorcontrib><creatorcontrib>Yakimov, Alexander</creatorcontrib><creatorcontrib>Redpath, Philip</creatorcontrib><creatorcontrib>Khodorkovskiy, Mikhail</creatorcontrib><creatorcontrib>Migaud, Marie E.</creatorcontrib><creatorcontrib>Ziegler, Mathias</creatorcontrib><creatorcontrib>Nikiforov, Andrey</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikova, Veronika</au><au>Shabalin, Konstantin</au><au>Nerinovski, Kirill</au><au>Dölle, Christian</au><au>Niere, Marc</au><au>Yakimov, Alexander</au><au>Redpath, Philip</au><au>Khodorkovskiy, Mikhail</au><au>Migaud, Marie E.</au><au>Ziegler, Mathias</au><au>Nikiforov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-11-06</date><risdate>2015</risdate><volume>290</volume><issue>45</issue><spage>27124</spage><epage>27137</epage><pages>27124-27137</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.
Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells.
Results: Human cells generate and release NR and NAR.
Conclusion: NR and NAR are authentic intermediates of human NAD metabolism.
Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26385918</pmid><doi>10.1074/jbc.M115.664458</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2015-11, Vol.290 (45), p.27124-27137 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646395 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 5'-Nucleotidase - metabolism 5′-nucleotidase Cytokines - metabolism HEK293 Cells Hep G2 Cells Humans Kinetics Magnetic Resonance Spectroscopy Metabolic Networks and Pathways Metabolism molecular cell biology NAD - biosynthesis Niacin - metabolism Niacinamide - analogs & derivatives Niacinamide - biosynthesis Niacinamide - metabolism nicotinamide nicotinamide adenine dinucleotide (NAD) Nicotinamide Phosphoribosyltransferase - metabolism nicotinic acid nicotinic acid riboside nucleoside/nucleotide metabolism Pentosyltransferases - metabolism Phosphorylation Recombinant Proteins - metabolism Ribonucleosides - biosynthesis Ribonucleosides - metabolism Signal Transduction Substrate Specificity |
title | Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation,%20Release,%20and%20Uptake%20of%20the%20NAD%20Precursor%20Nicotinic%20Acid%20Riboside%20by%20Human%20Cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kulikova,%20Veronika&rft.date=2015-11-06&rft.volume=290&rft.issue=45&rft.spage=27124&rft.epage=27137&rft.pages=27124-27137&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.664458&rft_dat=%3Cproquest_pubme%3E1731782754%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731782754&rft_id=info:pmid/26385918&rft_els_id=S0021925820494797&rfr_iscdi=true |