Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells

NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-11, Vol.290 (45), p.27124-27137
Hauptverfasser: Kulikova, Veronika, Shabalin, Konstantin, Nerinovski, Kirill, Dölle, Christian, Niere, Marc, Yakimov, Alexander, Redpath, Philip, Khodorkovskiy, Mikhail, Migaud, Marie E., Ziegler, Mathias, Nikiforov, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27137
container_issue 45
container_start_page 27124
container_title The Journal of biological chemistry
container_volume 290
creator Kulikova, Veronika
Shabalin, Konstantin
Nerinovski, Kirill
Dölle, Christian
Niere, Marc
Yakimov, Alexander
Redpath, Philip
Khodorkovskiy, Mikhail
Migaud, Marie E.
Ziegler, Mathias
Nikiforov, Andrey
description NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells. Results: Human cells generate and release NR and NAR. Conclusion: NR and NAR are authentic intermediates of human NAD metabolism. Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.
doi_str_mv 10.1074/jbc.M115.664458
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820494797</els_id><sourcerecordid>1731782754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</originalsourceid><addsrcrecordid>eNp1kc1PHCEYh4lpo-vH2VvDsQdnheFzLk0226pN1DZGExMPhGHeqdhZWGHGxP--mLWmPcgBDu_DD973QeiQkjklih8_tG5-QamYS8m50FtoRolmFRP09gOaEVLTqqmF3kG7OT-QsnhDt9FOLZkWDdUzdHcKAZIdfQxH-AoGsBmOsA0dvlmP9jfg2OPxHvDl4iv-mcBNKceEL72Low_e4YXzHb7ybcy-A9w-47NpZQNewjDkffSxt0OGg9dzD92cfLtenlXnP06_LxfnlROkGatGqZ4QSySxneBEacZbZTXVTnIAJoFDy3jvLNTUKdpKLmrC2rILqBuh2B76ssldT-0KOgdhTHYw6-RXNj2baL35vxL8vfkVnwyXXLJGlIDPrwEpPk6QR7Py2ZUWbIA4ZUMVo0rXSvCCHm9Ql2LOCfq3ZygxL0pMUWJelJiNknLj07-_e-P_OihAswGgzOjJQzLZeQgOOl8GPpou-nfD_wDa9Zot</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731782754</pqid></control><display><type>article</type><title>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kulikova, Veronika ; Shabalin, Konstantin ; Nerinovski, Kirill ; Dölle, Christian ; Niere, Marc ; Yakimov, Alexander ; Redpath, Philip ; Khodorkovskiy, Mikhail ; Migaud, Marie E. ; Ziegler, Mathias ; Nikiforov, Andrey</creator><creatorcontrib>Kulikova, Veronika ; Shabalin, Konstantin ; Nerinovski, Kirill ; Dölle, Christian ; Niere, Marc ; Yakimov, Alexander ; Redpath, Philip ; Khodorkovskiy, Mikhail ; Migaud, Marie E. ; Ziegler, Mathias ; Nikiforov, Andrey</creatorcontrib><description>NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells. Results: Human cells generate and release NR and NAR. Conclusion: NR and NAR are authentic intermediates of human NAD metabolism. Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.664458</identifier><identifier>PMID: 26385918</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5'-Nucleotidase - metabolism ; 5′-nucleotidase ; Cytokines - metabolism ; HEK293 Cells ; Hep G2 Cells ; Humans ; Kinetics ; Magnetic Resonance Spectroscopy ; Metabolic Networks and Pathways ; Metabolism ; molecular cell biology ; NAD - biosynthesis ; Niacin - metabolism ; Niacinamide - analogs &amp; derivatives ; Niacinamide - biosynthesis ; Niacinamide - metabolism ; nicotinamide ; nicotinamide adenine dinucleotide (NAD) ; Nicotinamide Phosphoribosyltransferase - metabolism ; nicotinic acid ; nicotinic acid riboside ; nucleoside/nucleotide metabolism ; Pentosyltransferases - metabolism ; Phosphorylation ; Recombinant Proteins - metabolism ; Ribonucleosides - biosynthesis ; Ribonucleosides - metabolism ; Signal Transduction ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2015-11, Vol.290 (45), p.27124-27137</ispartof><rights>2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</citedby><cites>FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646395/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646395/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26385918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulikova, Veronika</creatorcontrib><creatorcontrib>Shabalin, Konstantin</creatorcontrib><creatorcontrib>Nerinovski, Kirill</creatorcontrib><creatorcontrib>Dölle, Christian</creatorcontrib><creatorcontrib>Niere, Marc</creatorcontrib><creatorcontrib>Yakimov, Alexander</creatorcontrib><creatorcontrib>Redpath, Philip</creatorcontrib><creatorcontrib>Khodorkovskiy, Mikhail</creatorcontrib><creatorcontrib>Migaud, Marie E.</creatorcontrib><creatorcontrib>Ziegler, Mathias</creatorcontrib><creatorcontrib>Nikiforov, Andrey</creatorcontrib><title>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells. Results: Human cells generate and release NR and NAR. Conclusion: NR and NAR are authentic intermediates of human NAD metabolism. Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.</description><subject>5'-Nucleotidase - metabolism</subject><subject>5′-nucleotidase</subject><subject>Cytokines - metabolism</subject><subject>HEK293 Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>molecular cell biology</subject><subject>NAD - biosynthesis</subject><subject>Niacin - metabolism</subject><subject>Niacinamide - analogs &amp; derivatives</subject><subject>Niacinamide - biosynthesis</subject><subject>Niacinamide - metabolism</subject><subject>nicotinamide</subject><subject>nicotinamide adenine dinucleotide (NAD)</subject><subject>Nicotinamide Phosphoribosyltransferase - metabolism</subject><subject>nicotinic acid</subject><subject>nicotinic acid riboside</subject><subject>nucleoside/nucleotide metabolism</subject><subject>Pentosyltransferases - metabolism</subject><subject>Phosphorylation</subject><subject>Recombinant Proteins - metabolism</subject><subject>Ribonucleosides - biosynthesis</subject><subject>Ribonucleosides - metabolism</subject><subject>Signal Transduction</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1PHCEYh4lpo-vH2VvDsQdnheFzLk0226pN1DZGExMPhGHeqdhZWGHGxP--mLWmPcgBDu_DD973QeiQkjklih8_tG5-QamYS8m50FtoRolmFRP09gOaEVLTqqmF3kG7OT-QsnhDt9FOLZkWDdUzdHcKAZIdfQxH-AoGsBmOsA0dvlmP9jfg2OPxHvDl4iv-mcBNKceEL72Low_e4YXzHb7ybcy-A9w-47NpZQNewjDkffSxt0OGg9dzD92cfLtenlXnP06_LxfnlROkGatGqZ4QSySxneBEacZbZTXVTnIAJoFDy3jvLNTUKdpKLmrC2rILqBuh2B76ssldT-0KOgdhTHYw6-RXNj2baL35vxL8vfkVnwyXXLJGlIDPrwEpPk6QR7Py2ZUWbIA4ZUMVo0rXSvCCHm9Ql2LOCfq3ZygxL0pMUWJelJiNknLj07-_e-P_OihAswGgzOjJQzLZeQgOOl8GPpou-nfD_wDa9Zot</recordid><startdate>20151106</startdate><enddate>20151106</enddate><creator>Kulikova, Veronika</creator><creator>Shabalin, Konstantin</creator><creator>Nerinovski, Kirill</creator><creator>Dölle, Christian</creator><creator>Niere, Marc</creator><creator>Yakimov, Alexander</creator><creator>Redpath, Philip</creator><creator>Khodorkovskiy, Mikhail</creator><creator>Migaud, Marie E.</creator><creator>Ziegler, Mathias</creator><creator>Nikiforov, Andrey</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151106</creationdate><title>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</title><author>Kulikova, Veronika ; Shabalin, Konstantin ; Nerinovski, Kirill ; Dölle, Christian ; Niere, Marc ; Yakimov, Alexander ; Redpath, Philip ; Khodorkovskiy, Mikhail ; Migaud, Marie E. ; Ziegler, Mathias ; Nikiforov, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-977f00a060ad5407834b7a818c64ee36e4eb34fcae21c71b645203b4525e29573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>5'-Nucleotidase - metabolism</topic><topic>5′-nucleotidase</topic><topic>Cytokines - metabolism</topic><topic>HEK293 Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>molecular cell biology</topic><topic>NAD - biosynthesis</topic><topic>Niacin - metabolism</topic><topic>Niacinamide - analogs &amp; derivatives</topic><topic>Niacinamide - biosynthesis</topic><topic>Niacinamide - metabolism</topic><topic>nicotinamide</topic><topic>nicotinamide adenine dinucleotide (NAD)</topic><topic>Nicotinamide Phosphoribosyltransferase - metabolism</topic><topic>nicotinic acid</topic><topic>nicotinic acid riboside</topic><topic>nucleoside/nucleotide metabolism</topic><topic>Pentosyltransferases - metabolism</topic><topic>Phosphorylation</topic><topic>Recombinant Proteins - metabolism</topic><topic>Ribonucleosides - biosynthesis</topic><topic>Ribonucleosides - metabolism</topic><topic>Signal Transduction</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikova, Veronika</creatorcontrib><creatorcontrib>Shabalin, Konstantin</creatorcontrib><creatorcontrib>Nerinovski, Kirill</creatorcontrib><creatorcontrib>Dölle, Christian</creatorcontrib><creatorcontrib>Niere, Marc</creatorcontrib><creatorcontrib>Yakimov, Alexander</creatorcontrib><creatorcontrib>Redpath, Philip</creatorcontrib><creatorcontrib>Khodorkovskiy, Mikhail</creatorcontrib><creatorcontrib>Migaud, Marie E.</creatorcontrib><creatorcontrib>Ziegler, Mathias</creatorcontrib><creatorcontrib>Nikiforov, Andrey</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikova, Veronika</au><au>Shabalin, Konstantin</au><au>Nerinovski, Kirill</au><au>Dölle, Christian</au><au>Niere, Marc</au><au>Yakimov, Alexander</au><au>Redpath, Philip</au><au>Khodorkovskiy, Mikhail</au><au>Migaud, Marie E.</au><au>Ziegler, Mathias</au><au>Nikiforov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-11-06</date><risdate>2015</risdate><volume>290</volume><issue>45</issue><spage>27124</spage><epage>27137</epage><pages>27124-27137</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. Background: Nicotinamide riboside (NR) and nicotinic acid riboside (NAR) can serve as precursors of NAD in human cells. Results: Human cells generate and release NR and NAR. Conclusion: NR and NAR are authentic intermediates of human NAD metabolism. Significance: Different cell populations might support each other's NAD pools by providing ribosides as NAD precursors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26385918</pmid><doi>10.1074/jbc.M115.664458</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2015-11, Vol.290 (45), p.27124-27137
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646395
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 5'-Nucleotidase - metabolism
5′-nucleotidase
Cytokines - metabolism
HEK293 Cells
Hep G2 Cells
Humans
Kinetics
Magnetic Resonance Spectroscopy
Metabolic Networks and Pathways
Metabolism
molecular cell biology
NAD - biosynthesis
Niacin - metabolism
Niacinamide - analogs & derivatives
Niacinamide - biosynthesis
Niacinamide - metabolism
nicotinamide
nicotinamide adenine dinucleotide (NAD)
Nicotinamide Phosphoribosyltransferase - metabolism
nicotinic acid
nicotinic acid riboside
nucleoside/nucleotide metabolism
Pentosyltransferases - metabolism
Phosphorylation
Recombinant Proteins - metabolism
Ribonucleosides - biosynthesis
Ribonucleosides - metabolism
Signal Transduction
Substrate Specificity
title Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation,%20Release,%20and%20Uptake%20of%20the%20NAD%20Precursor%20Nicotinic%20Acid%20Riboside%20by%20Human%20Cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kulikova,%20Veronika&rft.date=2015-11-06&rft.volume=290&rft.issue=45&rft.spage=27124&rft.epage=27137&rft.pages=27124-27137&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.664458&rft_dat=%3Cproquest_pubme%3E1731782754%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731782754&rft_id=info:pmid/26385918&rft_els_id=S0021925820494797&rfr_iscdi=true