Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-10, Vol.290 (43), p.25876-25890
Hauptverfasser: Saha, Prasenjit Prasad, Srivastava, Shubhi, Kumar S K, Praveen, Sinha, Devanjan, D'Silva, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25890
container_issue 43
container_start_page 25876
container_title The Journal of biological chemistry
container_volume 290
creator Saha, Prasenjit Prasad
Srivastava, Shubhi
Kumar S K, Praveen
Sinha, Devanjan
D'Silva, Patrick
description Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.
doi_str_mv 10.1074/jbc.M115.678508
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727987860</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-607c889b17d23a37a68f926741be61e68627d263eb088a283c104c240b88bdf13</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxa0K1G4LZ27IRw5k8dhe2-GAVCVZNiJ_VpuAeovsrFNcZTchyVbsl-AzE6kFwVyeNG_0e9IbhN4AWQKR_MODqZcpwGoppFoRdYEWQBTz2AruXqAFIRQ8n67UFboexwcyD_fhEl1RwTgl0l-gX6nue3e8x1_sGe_s6PYnO-KuwXERAuBgcJOrdYubbsDZugDvaV-cTN0d-tb-xMWkjWvddP6I43SbxMFtGedZgeMMl5sIh9G3KMm3aZSVOF_jNC7zYJNn4S6-TXAYF_kujHbvcZDfbUPwX6GXjW5H-_pZb9DXdVQGGy_JP8_kxOupEJMniKyV8g3IPWWaSS1U41MhORgrwAol6OwIZg1RSlPFaiC8ppwYpcy-AXaDPj1x-5M52H1tj9Og26of3EEP56rTrvrfObrv1X33WHHBBeV8Brx7Bgzdj7myqTq4sbZtq4-2O40VSCp9JZUg8-nbf7P-hvx5AvsN1xuDeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727987860</pqid></control><display><type>article</type><title>Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Saha, Prasenjit Prasad ; Srivastava, Shubhi ; Kumar S K, Praveen ; Sinha, Devanjan ; D'Silva, Patrick</creator><creatorcontrib>Saha, Prasenjit Prasad ; Srivastava, Shubhi ; Kumar S K, Praveen ; Sinha, Devanjan ; D'Silva, Patrick</creatorcontrib><description>Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.678508</identifier><identifier>PMID: 26342079</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Amino Acid Sequence ; Carbon-Sulfur Lyases - chemistry ; Carbon-Sulfur Lyases - metabolism ; Carbon-Sulfur Lyases - physiology ; Disease Progression ; HeLa Cells ; Humans ; Iron-Regulatory Proteins - chemistry ; Iron-Regulatory Proteins - metabolism ; Iron-Regulatory Proteins - physiology ; Iron-Sulfur Proteins - metabolism ; Mitochondrial Diseases - metabolism ; Mitochondrial Diseases - physiopathology ; Molecular Bases of Disease ; Molecular Sequence Data ; Protein Binding ; Protein Stability ; Sequence Homology, Amino Acid</subject><ispartof>The Journal of biological chemistry, 2015-10, Vol.290 (43), p.25876-25890</ispartof><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646244/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646244/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26342079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saha, Prasenjit Prasad</creatorcontrib><creatorcontrib>Srivastava, Shubhi</creatorcontrib><creatorcontrib>Kumar S K, Praveen</creatorcontrib><creatorcontrib>Sinha, Devanjan</creatorcontrib><creatorcontrib>D'Silva, Patrick</creatorcontrib><title>Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.</description><subject>Amino Acid Sequence</subject><subject>Carbon-Sulfur Lyases - chemistry</subject><subject>Carbon-Sulfur Lyases - metabolism</subject><subject>Carbon-Sulfur Lyases - physiology</subject><subject>Disease Progression</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Iron-Regulatory Proteins - chemistry</subject><subject>Iron-Regulatory Proteins - metabolism</subject><subject>Iron-Regulatory Proteins - physiology</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Mitochondrial Diseases - metabolism</subject><subject>Mitochondrial Diseases - physiopathology</subject><subject>Molecular Bases of Disease</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Sequence Homology, Amino Acid</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9v1DAQxa0K1G4LZ27IRw5k8dhe2-GAVCVZNiJ_VpuAeovsrFNcZTchyVbsl-AzE6kFwVyeNG_0e9IbhN4AWQKR_MODqZcpwGoppFoRdYEWQBTz2AruXqAFIRQ8n67UFboexwcyD_fhEl1RwTgl0l-gX6nue3e8x1_sGe_s6PYnO-KuwXERAuBgcJOrdYubbsDZugDvaV-cTN0d-tb-xMWkjWvddP6I43SbxMFtGedZgeMMl5sIh9G3KMm3aZSVOF_jNC7zYJNn4S6-TXAYF_kujHbvcZDfbUPwX6GXjW5H-_pZb9DXdVQGGy_JP8_kxOupEJMniKyV8g3IPWWaSS1U41MhORgrwAol6OwIZg1RSlPFaiC8ppwYpcy-AXaDPj1x-5M52H1tj9Og26of3EEP56rTrvrfObrv1X33WHHBBeV8Brx7Bgzdj7myqTq4sbZtq4-2O40VSCp9JZUg8-nbf7P-hvx5AvsN1xuDeQ</recordid><startdate>20151023</startdate><enddate>20151023</enddate><creator>Saha, Prasenjit Prasad</creator><creator>Srivastava, Shubhi</creator><creator>Kumar S K, Praveen</creator><creator>Sinha, Devanjan</creator><creator>D'Silva, Patrick</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151023</creationdate><title>Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19</title><author>Saha, Prasenjit Prasad ; Srivastava, Shubhi ; Kumar S K, Praveen ; Sinha, Devanjan ; D'Silva, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-607c889b17d23a37a68f926741be61e68627d263eb088a283c104c240b88bdf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Carbon-Sulfur Lyases - chemistry</topic><topic>Carbon-Sulfur Lyases - metabolism</topic><topic>Carbon-Sulfur Lyases - physiology</topic><topic>Disease Progression</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Iron-Regulatory Proteins - chemistry</topic><topic>Iron-Regulatory Proteins - metabolism</topic><topic>Iron-Regulatory Proteins - physiology</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Mitochondrial Diseases - metabolism</topic><topic>Mitochondrial Diseases - physiopathology</topic><topic>Molecular Bases of Disease</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Prasenjit Prasad</creatorcontrib><creatorcontrib>Srivastava, Shubhi</creatorcontrib><creatorcontrib>Kumar S K, Praveen</creatorcontrib><creatorcontrib>Sinha, Devanjan</creatorcontrib><creatorcontrib>D'Silva, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Prasenjit Prasad</au><au>Srivastava, Shubhi</au><au>Kumar S K, Praveen</au><au>Sinha, Devanjan</au><au>D'Silva, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2015-10-23</date><risdate>2015</risdate><volume>290</volume><issue>43</issue><spage>25876</spage><epage>25890</epage><pages>25876-25890</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>26342079</pmid><doi>10.1074/jbc.M115.678508</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2015-10, Vol.290 (43), p.25876-25890
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646244
source MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Amino Acid Sequence
Carbon-Sulfur Lyases - chemistry
Carbon-Sulfur Lyases - metabolism
Carbon-Sulfur Lyases - physiology
Disease Progression
HeLa Cells
Humans
Iron-Regulatory Proteins - chemistry
Iron-Regulatory Proteins - metabolism
Iron-Regulatory Proteins - physiology
Iron-Sulfur Proteins - metabolism
Mitochondrial Diseases - metabolism
Mitochondrial Diseases - physiopathology
Molecular Bases of Disease
Molecular Sequence Data
Protein Binding
Protein Stability
Sequence Homology, Amino Acid
title Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Key%20Residues%20of%20ISD11%20Critical%20for%20NFS1-ISD11%20Subcomplex%20Stability:%20IMPLICATIONS%20IN%20THE%20DEVELOPMENT%20OF%20MITOCHONDRIAL%20DISORDER,%20COXPD19&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Saha,%20Prasenjit%20Prasad&rft.date=2015-10-23&rft.volume=290&rft.issue=43&rft.spage=25876&rft.epage=25890&rft.pages=25876-25890&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.678508&rft_dat=%3Cproquest_pubme%3E1727987860%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727987860&rft_id=info:pmid/26342079&rfr_iscdi=true