Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis

Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering, design and selection design and selection, 2015-12, Vol.28 (12), p.543-551
Hauptverfasser: Heimer, Brandon W., Tam, Brooke E., Sikes, Hadley D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 12
container_start_page 543
container_title Protein engineering, design and selection
container_volume 28
creator Heimer, Brandon W.
Tam, Brooke E.
Sikes, Hadley D.
description Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application.
doi_str_mv 10.1093/protein/gzv046
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzv046</oup_id><sourcerecordid>1780508779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-34064ffb17af77e100e5f002f3191312530129154249cea7b28cec8c67c40b073</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxS0Eoh9w5Yh8bA9pPbFjJ5dK1ZZCpQoucLYcx94YJfZiO6tu_3pSNl3RE5xmNH7z0zw_hD4AuQDS0MtNDNk4f7l-3BLGX6FjEAwKApS9PvQlP0InKf0kpOQC4C06KjmtWQVwjB5WvYpKZxPdo8oueKx8hzsXzTzrsNmGYfozDhYrPJrc74aidb5zfo27MCrn8XIDtiHi3q37IhmfXHZbl3f45uv1svaMV8MuufQOvbFqSOb9Uk_Rj9tP31dfivtvn-9W1_eFrhqaC8oIZ9a2IJQVwgAhprKzEUuhAQplRWd_DVSsZI02SrRlrY2uNReakZYIeoqu9tzN1I6m08bnqAa5iW5UcSeDcvLli3e9XIetZJxx4GQGnC2AGH5NJmU5uqTNMChvwpQkiJpUpBai-Q8pZWU95_REvdhLdQwpRWMPFwGRT8nK5VflPtl54ePfPg7y5yhnwfleEKbNv2C_AdkIsuE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734280460</pqid></control><display><type>article</type><title>Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Heimer, Brandon W. ; Tam, Brooke E. ; Sikes, Hadley D.</creator><creatorcontrib>Heimer, Brandon W. ; Tam, Brooke E. ; Sikes, Hadley D.</creatorcontrib><description>Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzv046</identifier><identifier>PMID: 26384511</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Binding Sites ; Directed Molecular Evolution - methods ; DNA Methylation ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Epigenomics - methods ; Escherichia coli ; Models, Molecular ; Molecular Sequence Data ; Original ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Sequence Alignment</subject><ispartof>Protein engineering, design and selection, 2015-12, Vol.28 (12), p.543-551</ispartof><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2015</rights><rights>The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-34064ffb17af77e100e5f002f3191312530129154249cea7b28cec8c67c40b073</citedby><cites>FETCH-LOGICAL-c593t-34064ffb17af77e100e5f002f3191312530129154249cea7b28cec8c67c40b073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26384511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heimer, Brandon W.</creatorcontrib><creatorcontrib>Tam, Brooke E.</creatorcontrib><creatorcontrib>Sikes, Hadley D.</creatorcontrib><title>Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis</title><title>Protein engineering, design and selection</title><addtitle>Protein Eng Des Sel</addtitle><description>Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Directed Molecular Evolution - methods</subject><subject>DNA Methylation</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Epigenomics - methods</subject><subject>Escherichia coli</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Original</subject><subject>Protein Structure, Tertiary</subject><subject>Saccharomyces cerevisiae</subject><subject>Sequence Alignment</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxS0Eoh9w5Yh8bA9pPbFjJ5dK1ZZCpQoucLYcx94YJfZiO6tu_3pSNl3RE5xmNH7z0zw_hD4AuQDS0MtNDNk4f7l-3BLGX6FjEAwKApS9PvQlP0InKf0kpOQC4C06KjmtWQVwjB5WvYpKZxPdo8oueKx8hzsXzTzrsNmGYfozDhYrPJrc74aidb5zfo27MCrn8XIDtiHi3q37IhmfXHZbl3f45uv1svaMV8MuufQOvbFqSOb9Uk_Rj9tP31dfivtvn-9W1_eFrhqaC8oIZ9a2IJQVwgAhprKzEUuhAQplRWd_DVSsZI02SrRlrY2uNReakZYIeoqu9tzN1I6m08bnqAa5iW5UcSeDcvLli3e9XIetZJxx4GQGnC2AGH5NJmU5uqTNMChvwpQkiJpUpBai-Q8pZWU95_REvdhLdQwpRWMPFwGRT8nK5VflPtl54ePfPg7y5yhnwfleEKbNv2C_AdkIsuE</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Heimer, Brandon W.</creator><creator>Tam, Brooke E.</creator><creator>Sikes, Hadley D.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis</title><author>Heimer, Brandon W. ; Tam, Brooke E. ; Sikes, Hadley D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-34064ffb17af77e100e5f002f3191312530129154249cea7b28cec8c67c40b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Directed Molecular Evolution - methods</topic><topic>DNA Methylation</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Epigenomics - methods</topic><topic>Escherichia coli</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Original</topic><topic>Protein Structure, Tertiary</topic><topic>Saccharomyces cerevisiae</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heimer, Brandon W.</creatorcontrib><creatorcontrib>Tam, Brooke E.</creatorcontrib><creatorcontrib>Sikes, Hadley D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heimer, Brandon W.</au><au>Tam, Brooke E.</au><au>Sikes, Hadley D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis</atitle><jtitle>Protein engineering, design and selection</jtitle><addtitle>Protein Eng Des Sel</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>28</volume><issue>12</issue><spage>543</spage><epage>551</epage><pages>543-551</pages><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>26384511</pmid><doi>10.1093/protein/gzv046</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, design and selection, 2015-12, Vol.28 (12), p.543-551
issn 1741-0126
1741-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4646160
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Binding Sites
Directed Molecular Evolution - methods
DNA Methylation
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Epigenomics - methods
Escherichia coli
Models, Molecular
Molecular Sequence Data
Original
Protein Structure, Tertiary
Saccharomyces cerevisiae
Sequence Alignment
title Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20directed%20evolution%20of%20a%20methyl-binding%20domain%20protein%20for%20high-sensitivity%20DNA%20methylation%20analysis&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Heimer,%20Brandon%20W.&rft.date=2015-12-01&rft.volume=28&rft.issue=12&rft.spage=543&rft.epage=551&rft.pages=543-551&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzv046&rft_dat=%3Cproquest_pubme%3E1780508779%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734280460&rft_id=info:pmid/26384511&rft_oup_id=10.1093/protein/gzv046&rfr_iscdi=true