Multi-level block permutation
Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2015-12, Vol.123, p.253-268 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | |
container_start_page | 253 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 123 |
creator | Winkler, Anderson M. Webster, Matthew A. Vidaurre, Diego Nichols, Thomas E. Smith, Stephen M. |
description | Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach.
•The presence of structured, non-independent data affects simple permutation testing.•Modelling full dependence obviated through definition of variance groups (minimal assumptions).•Implementation based on shuffling branches of a tree-like (hierarchical) structure.•Validity demonstrated with simulations, and exemplified with data from the HCP. |
doi_str_mv | 10.1016/j.neuroimage.2015.05.092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4644991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191500508X</els_id><sourcerecordid>3851726191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-486c54f98cf08827482923d2c5e55a3fe046dd3aa10d45d880da18ae58eb38bd3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rr6E5QBL156Np89yUXQxS9Y2ct6LtJJ9Zgx0xmT7gH_ventddW9KBSkIM_7FlUvIStG14yy9ny3HnDKKeztFtecMrWmtQx_QE4ZNaoxasMfzr0SjWbMnJAnpewopYZJ_Zic8JZuJKf0lDz_PMUxNBGPGFddTO7b6oB5P412DGl4Sh71NhZ8dvuekS_v311ffGwurz58unhz2bhWybGRunVK9ka7nmrNN1Jzw4XnTqFSVvRIZeu9sJZRL5XXmnrLtEWlsRO68-KMvF58D1O3R-9wGLONcMh1w_wDkg3w988QvsI2HUG2UhrDqoFYDGLALULKXYAjvxHe9FPcgnXQIXDeauD1ihtRVa9ux-b0fcIywj4UhzHaAdNUoDJcCyWN_A-Ua67qZrPry3voLk15qPdbKENVyyulF8rlVErG_m5bRmEOGXbwO2SYQwZay8zSF39e6074K9UKvF0ArJkdA2YoLuDg0IeMbgSfwr-n_AQaBbuu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728290562</pqid></control><display><type>article</type><title>Multi-level block permutation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central</source><creator>Winkler, Anderson M. ; Webster, Matthew A. ; Vidaurre, Diego ; Nichols, Thomas E. ; Smith, Stephen M.</creator><creatorcontrib>Winkler, Anderson M. ; Webster, Matthew A. ; Vidaurre, Diego ; Nichols, Thomas E. ; Smith, Stephen M.</creatorcontrib><description>Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach.
•The presence of structured, non-independent data affects simple permutation testing.•Modelling full dependence obviated through definition of variance groups (minimal assumptions).•Implementation based on shuffling branches of a tree-like (hierarchical) structure.•Validity demonstrated with simulations, and exemplified with data from the HCP.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2015.05.092</identifier><identifier>PMID: 26074200</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Cerebral Cortex - anatomy & histology ; Confidence intervals ; Connectome - methods ; Data Interpretation, Statistical ; Economic models ; Female ; General linear model ; Humans ; Hypotheses ; Hypothesis testing ; Image Processing, Computer-Assisted - methods ; Linear Models ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Multiple regression ; Permutation inference ; Physical, chemical, mathematical & earth Sciences ; Physique, chimie, mathématiques & sciences de la terre ; Repeated measurements ; Reproducibility of Results ; Statistics, Nonparametric ; Studies ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2015-12, Vol.123, p.253-268</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 1, 2015</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-486c54f98cf08827482923d2c5e55a3fe046dd3aa10d45d880da18ae58eb38bd3</citedby><cites>FETCH-LOGICAL-c654t-486c54f98cf08827482923d2c5e55a3fe046dd3aa10d45d880da18ae58eb38bd3</cites><orcidid>0000-0002-4169-9781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1728290562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986,64374,64376,64378,72230</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26074200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winkler, Anderson M.</creatorcontrib><creatorcontrib>Webster, Matthew A.</creatorcontrib><creatorcontrib>Vidaurre, Diego</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><title>Multi-level block permutation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach.
•The presence of structured, non-independent data affects simple permutation testing.•Modelling full dependence obviated through definition of variance groups (minimal assumptions).•Implementation based on shuffling branches of a tree-like (hierarchical) structure.•Validity demonstrated with simulations, and exemplified with data from the HCP.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>Confidence intervals</subject><subject>Connectome - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Economic models</subject><subject>Female</subject><subject>General linear model</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Multiple regression</subject><subject>Permutation inference</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><subject>Repeated measurements</subject><subject>Reproducibility of Results</subject><subject>Statistics, Nonparametric</subject><subject>Studies</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU2LFDEQhoMo7rr6E5QBL156Np89yUXQxS9Y2ct6LtJJ9Zgx0xmT7gH_ventddW9KBSkIM_7FlUvIStG14yy9ny3HnDKKeztFtecMrWmtQx_QE4ZNaoxasMfzr0SjWbMnJAnpewopYZJ_Zic8JZuJKf0lDz_PMUxNBGPGFddTO7b6oB5P412DGl4Sh71NhZ8dvuekS_v311ffGwurz58unhz2bhWybGRunVK9ka7nmrNN1Jzw4XnTqFSVvRIZeu9sJZRL5XXmnrLtEWlsRO68-KMvF58D1O3R-9wGLONcMh1w_wDkg3w988QvsI2HUG2UhrDqoFYDGLALULKXYAjvxHe9FPcgnXQIXDeauD1ihtRVa9ux-b0fcIywj4UhzHaAdNUoDJcCyWN_A-Ua67qZrPry3voLk15qPdbKENVyyulF8rlVErG_m5bRmEOGXbwO2SYQwZay8zSF39e6074K9UKvF0ArJkdA2YoLuDg0IeMbgSfwr-n_AQaBbuu</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Winkler, Anderson M.</creator><creator>Webster, Matthew A.</creator><creator>Vidaurre, Diego</creator><creator>Nichols, Thomas E.</creator><creator>Smith, Stephen M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4169-9781</orcidid></search><sort><creationdate>20151201</creationdate><title>Multi-level block permutation</title><author>Winkler, Anderson M. ; Webster, Matthew A. ; Vidaurre, Diego ; Nichols, Thomas E. ; Smith, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-486c54f98cf08827482923d2c5e55a3fe046dd3aa10d45d880da18ae58eb38bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>Confidence intervals</topic><topic>Connectome - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Economic models</topic><topic>Female</topic><topic>General linear model</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Multiple regression</topic><topic>Permutation inference</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><topic>Repeated measurements</topic><topic>Reproducibility of Results</topic><topic>Statistics, Nonparametric</topic><topic>Studies</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winkler, Anderson M.</creatorcontrib><creatorcontrib>Webster, Matthew A.</creatorcontrib><creatorcontrib>Vidaurre, Diego</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Journals (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winkler, Anderson M.</au><au>Webster, Matthew A.</au><au>Vidaurre, Diego</au><au>Nichols, Thomas E.</au><au>Smith, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-level block permutation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>123</volume><spage>253</spage><epage>268</epage><pages>253-268</pages><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach.
•The presence of structured, non-independent data affects simple permutation testing.•Modelling full dependence obviated through definition of variance groups (minimal assumptions).•Implementation based on shuffling branches of a tree-like (hierarchical) structure.•Validity demonstrated with simulations, and exemplified with data from the HCP.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26074200</pmid><doi>10.1016/j.neuroimage.2015.05.092</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4169-9781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2015-12, Vol.123, p.253-268 |
issn | 1053-8119 1095-9572 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4644991 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central |
subjects | Adult Algorithms Cerebral Cortex - anatomy & histology Confidence intervals Connectome - methods Data Interpretation, Statistical Economic models Female General linear model Humans Hypotheses Hypothesis testing Image Processing, Computer-Assisted - methods Linear Models Magnetic Resonance Imaging - methods Male Medical imaging Multiple regression Permutation inference Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Repeated measurements Reproducibility of Results Statistics, Nonparametric Studies Young Adult |
title | Multi-level block permutation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-level%20block%20permutation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Winkler,%20Anderson%20M.&rft.date=2015-12-01&rft.volume=123&rft.spage=253&rft.epage=268&rft.pages=253-268&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2015.05.092&rft_dat=%3Cproquest_pubme%3E3851726191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728290562&rft_id=info:pmid/26074200&rft_els_id=S105381191500508X&rfr_iscdi=true |