Differential Sox10 genomic occupancy in myelinating glia

Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2015-11, Vol.63 (11), p.1897-1914
Hauptverfasser: Lopez-Anido, Camila, Sun, Guannan, Koenning, Matthias, Srinivasan, Rajini, Hung, Holly A., Emery, Ben, Keles, Sunduz, Svaren, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1914
container_issue 11
container_start_page 1897
container_title Glia
container_volume 63
creator Lopez-Anido, Camila
Sun, Guannan
Koenning, Matthias
Srinivasan, Rajini
Hung, Holly A.
Emery, Ben
Keles, Sunduz
Svaren, John
description Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type‐specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP‐Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type‐specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super‐enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type‐specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897–1914 Main Points ChIP‐Seq analysis of Sox10 binding in vivo was used to identify shared and specific binding sites in oligodendrocytes and Schwann cells. Cell type‐specific binding sites are enriched with motifs of the distinct transcription factors involved in Schwann cell and oligodendrocyte development.
doi_str_mv 10.1002/glia.22855
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4644515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826616409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6555-289a009b2fb246977fa24020bc1534bd97d7a2ebca747ce8b0ccfca1391bbba83</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0Eomngwg9AK3FBSFs8Xn9ekKoU0ooAB0A9WrbjDS67drrO0ubf45A2Ag5wGo3mmXc-XoSeAT4BjMnrVRfMCSGSsQdoAljJGqDhD9EES0VroAqO0HHOVxhDScRjdESYEpRzOUHyLLStH3zcBNNVn9Mt4GrlY-qDq5Jz49pEt61CrPqt70I0mxBX1W7gE_SoNV32T-_iFH199_bL7LxefJpfzE4XteOMsZpIZTBWlrSWUK6EaA2hmGDrgDXULpVYCkO8dUZQ4by02LnWGWgUWGuNbKbozV53PdreL13ZdDCdXg-hN8NWJxP0n5UYvulV-qEpp5SVIVP08k5gSNejzxvdh-x815no05g1SMI5cIrV_1FBCEiGGS_oi7_QqzQOsXyiUIA54aqhhXq1p9yQch58e9gbsN55p3ev1L-8K_Dz3y89oPdmFQD2wE3o_PYfUnq-uDi9F633PSFv_O2hxwzfNReNYPry41x_WFzOzs_Ye82bn1TGsq0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710626934</pqid></control><display><type>article</type><title>Differential Sox10 genomic occupancy in myelinating glia</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lopez-Anido, Camila ; Sun, Guannan ; Koenning, Matthias ; Srinivasan, Rajini ; Hung, Holly A. ; Emery, Ben ; Keles, Sunduz ; Svaren, John</creator><creatorcontrib>Lopez-Anido, Camila ; Sun, Guannan ; Koenning, Matthias ; Srinivasan, Rajini ; Hung, Holly A. ; Emery, Ben ; Keles, Sunduz ; Svaren, John</creatorcontrib><description>Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type‐specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP‐Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type‐specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super‐enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type‐specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897–1914 Main Points ChIP‐Seq analysis of Sox10 binding in vivo was used to identify shared and specific binding sites in oligodendrocytes and Schwann cells. Cell type‐specific binding sites are enriched with motifs of the distinct transcription factors involved in Schwann cell and oligodendrocyte development.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22855</identifier><identifier>PMID: 25974668</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>chromatin ; enhancer ; Gene expression ; Leprosy ; Multiple sclerosis ; myelin ; oligodendrocyte ; Schwann ; transcription</subject><ispartof>Glia, 2015-11, Vol.63 (11), p.1897-1914</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6555-289a009b2fb246977fa24020bc1534bd97d7a2ebca747ce8b0ccfca1391bbba83</citedby><cites>FETCH-LOGICAL-c6555-289a009b2fb246977fa24020bc1534bd97d7a2ebca747ce8b0ccfca1391bbba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22855$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22855$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25974668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Anido, Camila</creatorcontrib><creatorcontrib>Sun, Guannan</creatorcontrib><creatorcontrib>Koenning, Matthias</creatorcontrib><creatorcontrib>Srinivasan, Rajini</creatorcontrib><creatorcontrib>Hung, Holly A.</creatorcontrib><creatorcontrib>Emery, Ben</creatorcontrib><creatorcontrib>Keles, Sunduz</creatorcontrib><creatorcontrib>Svaren, John</creatorcontrib><title>Differential Sox10 genomic occupancy in myelinating glia</title><title>Glia</title><addtitle>Glia</addtitle><description>Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type‐specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP‐Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type‐specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super‐enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type‐specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897–1914 Main Points ChIP‐Seq analysis of Sox10 binding in vivo was used to identify shared and specific binding sites in oligodendrocytes and Schwann cells. Cell type‐specific binding sites are enriched with motifs of the distinct transcription factors involved in Schwann cell and oligodendrocyte development.</description><subject>chromatin</subject><subject>enhancer</subject><subject>Gene expression</subject><subject>Leprosy</subject><subject>Multiple sclerosis</subject><subject>myelin</subject><subject>oligodendrocyte</subject><subject>Schwann</subject><subject>transcription</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0Eomngwg9AK3FBSFs8Xn9ekKoU0ooAB0A9WrbjDS67drrO0ubf45A2Ag5wGo3mmXc-XoSeAT4BjMnrVRfMCSGSsQdoAljJGqDhD9EES0VroAqO0HHOVxhDScRjdESYEpRzOUHyLLStH3zcBNNVn9Mt4GrlY-qDq5Jz49pEt61CrPqt70I0mxBX1W7gE_SoNV32T-_iFH199_bL7LxefJpfzE4XteOMsZpIZTBWlrSWUK6EaA2hmGDrgDXULpVYCkO8dUZQ4by02LnWGWgUWGuNbKbozV53PdreL13ZdDCdXg-hN8NWJxP0n5UYvulV-qEpp5SVIVP08k5gSNejzxvdh-x815no05g1SMI5cIrV_1FBCEiGGS_oi7_QqzQOsXyiUIA54aqhhXq1p9yQch58e9gbsN55p3ev1L-8K_Dz3y89oPdmFQD2wE3o_PYfUnq-uDi9F633PSFv_O2hxwzfNReNYPry41x_WFzOzs_Ye82bn1TGsq0</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Lopez-Anido, Camila</creator><creator>Sun, Guannan</creator><creator>Koenning, Matthias</creator><creator>Srinivasan, Rajini</creator><creator>Hung, Holly A.</creator><creator>Emery, Ben</creator><creator>Keles, Sunduz</creator><creator>Svaren, John</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201511</creationdate><title>Differential Sox10 genomic occupancy in myelinating glia</title><author>Lopez-Anido, Camila ; Sun, Guannan ; Koenning, Matthias ; Srinivasan, Rajini ; Hung, Holly A. ; Emery, Ben ; Keles, Sunduz ; Svaren, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6555-289a009b2fb246977fa24020bc1534bd97d7a2ebca747ce8b0ccfca1391bbba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>chromatin</topic><topic>enhancer</topic><topic>Gene expression</topic><topic>Leprosy</topic><topic>Multiple sclerosis</topic><topic>myelin</topic><topic>oligodendrocyte</topic><topic>Schwann</topic><topic>transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Anido, Camila</creatorcontrib><creatorcontrib>Sun, Guannan</creatorcontrib><creatorcontrib>Koenning, Matthias</creatorcontrib><creatorcontrib>Srinivasan, Rajini</creatorcontrib><creatorcontrib>Hung, Holly A.</creatorcontrib><creatorcontrib>Emery, Ben</creatorcontrib><creatorcontrib>Keles, Sunduz</creatorcontrib><creatorcontrib>Svaren, John</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Anido, Camila</au><au>Sun, Guannan</au><au>Koenning, Matthias</au><au>Srinivasan, Rajini</au><au>Hung, Holly A.</au><au>Emery, Ben</au><au>Keles, Sunduz</au><au>Svaren, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Sox10 genomic occupancy in myelinating glia</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2015-11</date><risdate>2015</risdate><volume>63</volume><issue>11</issue><spage>1897</spage><epage>1914</epage><pages>1897-1914</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type‐specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP‐Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type‐specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super‐enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type‐specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897–1914 Main Points ChIP‐Seq analysis of Sox10 binding in vivo was used to identify shared and specific binding sites in oligodendrocytes and Schwann cells. Cell type‐specific binding sites are enriched with motifs of the distinct transcription factors involved in Schwann cell and oligodendrocyte development.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25974668</pmid><doi>10.1002/glia.22855</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2015-11, Vol.63 (11), p.1897-1914
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4644515
source Wiley Online Library Journals Frontfile Complete
subjects chromatin
enhancer
Gene expression
Leprosy
Multiple sclerosis
myelin
oligodendrocyte
Schwann
transcription
title Differential Sox10 genomic occupancy in myelinating glia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Sox10%20genomic%20occupancy%20in%20myelinating%20glia&rft.jtitle=Glia&rft.au=Lopez-Anido,%20Camila&rft.date=2015-11&rft.volume=63&rft.issue=11&rft.spage=1897&rft.epage=1914&rft.pages=1897-1914&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22855&rft_dat=%3Cproquest_pubme%3E1826616409%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710626934&rft_id=info:pmid/25974668&rfr_iscdi=true