Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix
The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-08, Vol.5 (1), p.13501-13501, Article 13501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13501 |
---|---|
container_issue | 1 |
container_start_page | 13501 |
container_title | Scientific reports |
container_volume | 5 |
creator | Zhang, Pengwei Hu, Liming Meegoda, Jay N. Gao, Shengyan |
description | The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. |
doi_str_mv | 10.1038/srep13501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4642512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1708895554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-8d524628c3a9737aade3bc82f7c68fd10f822cd3f1c740295100094cbc27ef433</originalsourceid><addsrcrecordid>eNplkU9Lw0AQxRdRbKk9-AUk4EWF2P2bbECEUmwVbD2o52W72bSpaTbuJtZ-e1daS9W5zMD8ePOYB8ApgtcIEt5zVleIMIgOQBtDykJMMD7cm1ug69wC-mI4oSg5Bi0cEQQxidrgZpwra3oTWZqwMlYHE12vjH0L-qUs1i53gcmCkXTBsDCrIC-D57ksdDCWtc0_T8BRJgunu9veAa_Du5fBffj4NHoY9B9DRQmvQ54yTCPMFZFJTGIpU02miuMsVhHPUgQzjrFKSYZUTCFOGPJeE6qmCsc6o4R0wO1Gt2qmS50qXdZWFqKy-VLatTAyF783ZT4XM_MhaEQxQ9gLXGwFrHlvtKvFMndKF4UstWmcQDHkPGGMUY-e_0EXprH-GZ7iSRLT2MOeutxQ_nnOJ5DtzCAovmMRu1g8e7bvfkf-hOCBqw3g_Kqcabt38p_aF1NIlMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899747170</pqid></control><display><type>article</type><title>Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Pengwei ; Hu, Liming ; Meegoda, Jay N. ; Gao, Shengyan</creator><creatorcontrib>Zhang, Pengwei ; Hu, Liming ; Meegoda, Jay N. ; Gao, Shengyan</creatorcontrib><description>The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep13501</identifier><identifier>PMID: 26310236</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/189 ; 639/766/25 ; 704/2151/213 ; Gas flow ; Heterogeneity ; Humanities and Social Sciences ; Laboratory tests ; Membrane permeability ; multidisciplinary ; Pore pressure ; Pore size ; Pressure ; Reservoirs ; Science ; Shale ; Shale gas ; Shales ; Viscous flow</subject><ispartof>Scientific reports, 2015-08, Vol.5 (1), p.13501-13501, Article 13501</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-8d524628c3a9737aade3bc82f7c68fd10f822cd3f1c740295100094cbc27ef433</citedby><cites>FETCH-LOGICAL-c438t-8d524628c3a9737aade3bc82f7c68fd10f822cd3f1c740295100094cbc27ef433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26310236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pengwei</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Meegoda, Jay N.</creatorcontrib><creatorcontrib>Gao, Shengyan</creatorcontrib><title>Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.</description><subject>639/766/189</subject><subject>639/766/25</subject><subject>704/2151/213</subject><subject>Gas flow</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Laboratory tests</subject><subject>Membrane permeability</subject><subject>multidisciplinary</subject><subject>Pore pressure</subject><subject>Pore size</subject><subject>Pressure</subject><subject>Reservoirs</subject><subject>Science</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shales</subject><subject>Viscous flow</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9Lw0AQxRdRbKk9-AUk4EWF2P2bbECEUmwVbD2o52W72bSpaTbuJtZ-e1daS9W5zMD8ePOYB8ApgtcIEt5zVleIMIgOQBtDykJMMD7cm1ug69wC-mI4oSg5Bi0cEQQxidrgZpwra3oTWZqwMlYHE12vjH0L-qUs1i53gcmCkXTBsDCrIC-D57ksdDCWtc0_T8BRJgunu9veAa_Du5fBffj4NHoY9B9DRQmvQ54yTCPMFZFJTGIpU02miuMsVhHPUgQzjrFKSYZUTCFOGPJeE6qmCsc6o4R0wO1Gt2qmS50qXdZWFqKy-VLatTAyF783ZT4XM_MhaEQxQ9gLXGwFrHlvtKvFMndKF4UstWmcQDHkPGGMUY-e_0EXprH-GZ7iSRLT2MOeutxQ_nnOJ5DtzCAovmMRu1g8e7bvfkf-hOCBqw3g_Kqcabt38p_aF1NIlMs</recordid><startdate>20150827</startdate><enddate>20150827</enddate><creator>Zhang, Pengwei</creator><creator>Hu, Liming</creator><creator>Meegoda, Jay N.</creator><creator>Gao, Shengyan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150827</creationdate><title>Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix</title><author>Zhang, Pengwei ; Hu, Liming ; Meegoda, Jay N. ; Gao, Shengyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-8d524628c3a9737aade3bc82f7c68fd10f822cd3f1c740295100094cbc27ef433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/189</topic><topic>639/766/25</topic><topic>704/2151/213</topic><topic>Gas flow</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Laboratory tests</topic><topic>Membrane permeability</topic><topic>multidisciplinary</topic><topic>Pore pressure</topic><topic>Pore size</topic><topic>Pressure</topic><topic>Reservoirs</topic><topic>Science</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shales</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengwei</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Meegoda, Jay N.</creatorcontrib><creatorcontrib>Gao, Shengyan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengwei</au><au>Hu, Liming</au><au>Meegoda, Jay N.</au><au>Gao, Shengyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-08-27</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>13501</spage><epage>13501</epage><pages>13501-13501</pages><artnum>13501</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26310236</pmid><doi>10.1038/srep13501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-08, Vol.5 (1), p.13501-13501, Article 13501 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4642512 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/766/189 639/766/25 704/2151/213 Gas flow Heterogeneity Humanities and Social Sciences Laboratory tests Membrane permeability multidisciplinary Pore pressure Pore size Pressure Reservoirs Science Shale Shale gas Shales Viscous flow |
title | Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro/Nano-pore%20Network%20Analysis%20of%20Gas%20Flow%20in%20Shale%20Matrix&rft.jtitle=Scientific%20reports&rft.au=Zhang,%20Pengwei&rft.date=2015-08-27&rft.volume=5&rft.issue=1&rft.spage=13501&rft.epage=13501&rft.pages=13501-13501&rft.artnum=13501&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep13501&rft_dat=%3Cproquest_pubme%3E1708895554%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899747170&rft_id=info:pmid/26310236&rfr_iscdi=true |