HSPB1 as a novel regulator of ferroptotic cancer cell death
Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates...
Gespeichert in:
Veröffentlicht in: | Oncogene 2015-11, Vol.34 (45), p.5617-5625 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5625 |
---|---|
container_issue | 45 |
container_start_page | 5617 |
container_title | Oncogene |
container_volume | 34 |
creator | Sun, X Ou, Z Xie, M Kang, R Fan, Y Niu, X Wang, H Cao, L Tang, D |
description | Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy. |
doi_str_mv | 10.1038/onc.2015.32 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434690978</galeid><sourcerecordid>A434690978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</originalsourceid><addsrcrecordid>eNqNkt1LHDEUxUNR6tb61PcS8KXQzjbfHwiCSqsFoYXW55DJJOvIbLImMwv9782yVqv4IHm4kPu7h3sPB4APGM0xouprim5OEOZzSt6AGWZSNJxrtgNmSHPUaELJHnhXyg1CSGpE3oI9wiVRQtIZOLr4_esUQ1ughTGt_QCzX0yDHVOGKcDgc06rMY29g85G5zN0fhhg5-14_R7sBjsUf3Bf98HV929_zi6ay5_nP85OLhsnsBgbzoKgTjEbAiK0Y0i3jnLsbFCaMKkYskrwjrQdoVLJoDvFWs2clkGGllK6D463uqupXfrO-ThmO5hV7pc2_zXJ9uZpJ_bXZpHWhgmGsMJV4NO9QE63ky-jWfZlc4eNPk3FYCm4VhRr_QqU4rpkNbKih8_QmzTlWJ0whFIsMFdSPFILO3jTx5Dqim4jak4YZUIjLVWl5i9Q9XV-2bsUfejr_5OBz9sBl1Mp2YcHOzAym1iYGguziYWhpNIf_3fwgf2Xgwp82QKltuLC58dbXtK7AxLkvjI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331615876</pqid></control><display><type>article</type><title>HSPB1 as a novel regulator of ferroptotic cancer cell death</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, X ; Ou, Z ; Xie, M ; Kang, R ; Fan, Y ; Niu, X ; Wang, H ; Cao, L ; Tang, D</creator><creatorcontrib>Sun, X ; Ou, Z ; Xie, M ; Kang, R ; Fan, Y ; Niu, X ; Wang, H ; Cao, L ; Tang, D</creatorcontrib><description>Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2015.32</identifier><identifier>PMID: 25728673</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 631/67/1059/2326 ; 96/109 ; 96/2 ; Analysis ; Animal models ; Animals ; Antitumor activity ; Apoptosis ; Biochemistry ; Cancer ; Care and treatment ; Cell Biology ; Cell Death ; Complications and side effects ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Ferroptosis ; Heat shock factors ; Heat shock proteins ; Heat Shock Transcription Factors ; Heat-Shock Response - drug effects ; Heat-Shock Response - genetics ; HeLa Cells ; HSF1 protein ; HSP27 Heat-Shock Proteins - genetics ; HSP27 Heat-Shock Proteins - metabolism ; Human Genetics ; Humans ; Influence ; Internal Medicine ; Iron ; Iron - metabolism ; Kinases ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - genetics ; Neoplasms, Experimental - metabolism ; Neoplasms, Experimental - pathology ; Oncology ; original-article ; Phosphorylation ; Phosphorylation - drug effects ; Phosphorylation - genetics ; Piperazines - pharmacology ; Protein kinase C ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Oncogene, 2015-11, Vol.34 (45), p.5617-5625</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</citedby><cites>FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2015.32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2015.32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25728673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, X</creatorcontrib><creatorcontrib>Ou, Z</creatorcontrib><creatorcontrib>Xie, M</creatorcontrib><creatorcontrib>Kang, R</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Niu, X</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Cao, L</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><title>HSPB1 as a novel regulator of ferroptotic cancer cell death</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.</description><subject>13/89</subject><subject>631/67/1059/2326</subject><subject>96/109</subject><subject>96/2</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell Death</subject><subject>Complications and side effects</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Ferroptosis</subject><subject>Heat shock factors</subject><subject>Heat shock proteins</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat-Shock Response - drug effects</subject><subject>Heat-Shock Response - genetics</subject><subject>HeLa Cells</subject><subject>HSF1 protein</subject><subject>HSP27 Heat-Shock Proteins - genetics</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Influence</subject><subject>Internal Medicine</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - genetics</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphorylation - genetics</subject><subject>Piperazines - pharmacology</subject><subject>Protein kinase C</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt1LHDEUxUNR6tb61PcS8KXQzjbfHwiCSqsFoYXW55DJJOvIbLImMwv9782yVqv4IHm4kPu7h3sPB4APGM0xouprim5OEOZzSt6AGWZSNJxrtgNmSHPUaELJHnhXyg1CSGpE3oI9wiVRQtIZOLr4_esUQ1ughTGt_QCzX0yDHVOGKcDgc06rMY29g85G5zN0fhhg5-14_R7sBjsUf3Bf98HV929_zi6ay5_nP85OLhsnsBgbzoKgTjEbAiK0Y0i3jnLsbFCaMKkYskrwjrQdoVLJoDvFWs2clkGGllK6D463uqupXfrO-ThmO5hV7pc2_zXJ9uZpJ_bXZpHWhgmGsMJV4NO9QE63ky-jWfZlc4eNPk3FYCm4VhRr_QqU4rpkNbKih8_QmzTlWJ0whFIsMFdSPFILO3jTx5Dqim4jak4YZUIjLVWl5i9Q9XV-2bsUfejr_5OBz9sBl1Mp2YcHOzAym1iYGguziYWhpNIf_3fwgf2Xgwp82QKltuLC58dbXtK7AxLkvjI</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Sun, X</creator><creator>Ou, Z</creator><creator>Xie, M</creator><creator>Kang, R</creator><creator>Fan, Y</creator><creator>Niu, X</creator><creator>Wang, H</creator><creator>Cao, L</creator><creator>Tang, D</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151105</creationdate><title>HSPB1 as a novel regulator of ferroptotic cancer cell death</title><author>Sun, X ; Ou, Z ; Xie, M ; Kang, R ; Fan, Y ; Niu, X ; Wang, H ; Cao, L ; Tang, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/89</topic><topic>631/67/1059/2326</topic><topic>96/109</topic><topic>96/2</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell Death</topic><topic>Complications and side effects</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Ferroptosis</topic><topic>Heat shock factors</topic><topic>Heat shock proteins</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat-Shock Response - drug effects</topic><topic>Heat-Shock Response - genetics</topic><topic>HeLa Cells</topic><topic>HSF1 protein</topic><topic>HSP27 Heat-Shock Proteins - genetics</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Influence</topic><topic>Internal Medicine</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - genetics</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphorylation - genetics</topic><topic>Piperazines - pharmacology</topic><topic>Protein kinase C</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, X</creatorcontrib><creatorcontrib>Ou, Z</creatorcontrib><creatorcontrib>Xie, M</creatorcontrib><creatorcontrib>Kang, R</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Niu, X</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Cao, L</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, X</au><au>Ou, Z</au><au>Xie, M</au><au>Kang, R</au><au>Fan, Y</au><au>Niu, X</au><au>Wang, H</au><au>Cao, L</au><au>Tang, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HSPB1 as a novel regulator of ferroptotic cancer cell death</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-11-05</date><risdate>2015</risdate><volume>34</volume><issue>45</issue><spage>5617</spage><epage>5625</epage><pages>5617-5625</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25728673</pmid><doi>10.1038/onc.2015.32</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2015-11, Vol.34 (45), p.5617-5625 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640181 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 13/89 631/67/1059/2326 96/109 96/2 Analysis Animal models Animals Antitumor activity Apoptosis Biochemistry Cancer Care and treatment Cell Biology Cell Death Complications and side effects DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Ferroptosis Heat shock factors Heat shock proteins Heat Shock Transcription Factors Heat-Shock Response - drug effects Heat-Shock Response - genetics HeLa Cells HSF1 protein HSP27 Heat-Shock Proteins - genetics HSP27 Heat-Shock Proteins - metabolism Human Genetics Humans Influence Internal Medicine Iron Iron - metabolism Kinases Medicine Medicine & Public Health Mice Mice, Inbred NOD Mice, SCID Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Neoplasms, Experimental - drug therapy Neoplasms, Experimental - genetics Neoplasms, Experimental - metabolism Neoplasms, Experimental - pathology Oncology original-article Phosphorylation Phosphorylation - drug effects Phosphorylation - genetics Piperazines - pharmacology Protein kinase C Reactive oxygen species Reactive Oxygen Species - metabolism Transcription Factors - genetics Transcription Factors - metabolism Xenograft Model Antitumor Assays Xenografts |
title | HSPB1 as a novel regulator of ferroptotic cancer cell death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HSPB1%20as%20a%20novel%20regulator%20of%20ferroptotic%20cancer%20cell%20death&rft.jtitle=Oncogene&rft.au=Sun,%20X&rft.date=2015-11-05&rft.volume=34&rft.issue=45&rft.spage=5617&rft.epage=5625&rft.pages=5617-5625&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2015.32&rft_dat=%3Cgale_pubme%3EA434690978%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331615876&rft_id=info:pmid/25728673&rft_galeid=A434690978&rfr_iscdi=true |