HSPB1 as a novel regulator of ferroptotic cancer cell death

Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2015-11, Vol.34 (45), p.5617-5625
Hauptverfasser: Sun, X, Ou, Z, Xie, M, Kang, R, Fan, Y, Niu, X, Wang, H, Cao, L, Tang, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5625
container_issue 45
container_start_page 5617
container_title Oncogene
container_volume 34
creator Sun, X
Ou, Z
Xie, M
Kang, R
Fan, Y
Niu, X
Wang, H
Cao, L
Tang, D
description Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.
doi_str_mv 10.1038/onc.2015.32
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434690978</galeid><sourcerecordid>A434690978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</originalsourceid><addsrcrecordid>eNqNkt1LHDEUxUNR6tb61PcS8KXQzjbfHwiCSqsFoYXW55DJJOvIbLImMwv9782yVqv4IHm4kPu7h3sPB4APGM0xouprim5OEOZzSt6AGWZSNJxrtgNmSHPUaELJHnhXyg1CSGpE3oI9wiVRQtIZOLr4_esUQ1ughTGt_QCzX0yDHVOGKcDgc06rMY29g85G5zN0fhhg5-14_R7sBjsUf3Bf98HV929_zi6ay5_nP85OLhsnsBgbzoKgTjEbAiK0Y0i3jnLsbFCaMKkYskrwjrQdoVLJoDvFWs2clkGGllK6D463uqupXfrO-ThmO5hV7pc2_zXJ9uZpJ_bXZpHWhgmGsMJV4NO9QE63ky-jWfZlc4eNPk3FYCm4VhRr_QqU4rpkNbKih8_QmzTlWJ0whFIsMFdSPFILO3jTx5Dqim4jak4YZUIjLVWl5i9Q9XV-2bsUfejr_5OBz9sBl1Mp2YcHOzAym1iYGguziYWhpNIf_3fwgf2Xgwp82QKltuLC58dbXtK7AxLkvjI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331615876</pqid></control><display><type>article</type><title>HSPB1 as a novel regulator of ferroptotic cancer cell death</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, X ; Ou, Z ; Xie, M ; Kang, R ; Fan, Y ; Niu, X ; Wang, H ; Cao, L ; Tang, D</creator><creatorcontrib>Sun, X ; Ou, Z ; Xie, M ; Kang, R ; Fan, Y ; Niu, X ; Wang, H ; Cao, L ; Tang, D</creatorcontrib><description>Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2015.32</identifier><identifier>PMID: 25728673</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 631/67/1059/2326 ; 96/109 ; 96/2 ; Analysis ; Animal models ; Animals ; Antitumor activity ; Apoptosis ; Biochemistry ; Cancer ; Care and treatment ; Cell Biology ; Cell Death ; Complications and side effects ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Ferroptosis ; Heat shock factors ; Heat shock proteins ; Heat Shock Transcription Factors ; Heat-Shock Response - drug effects ; Heat-Shock Response - genetics ; HeLa Cells ; HSF1 protein ; HSP27 Heat-Shock Proteins - genetics ; HSP27 Heat-Shock Proteins - metabolism ; Human Genetics ; Humans ; Influence ; Internal Medicine ; Iron ; Iron - metabolism ; Kinases ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - genetics ; Neoplasms, Experimental - metabolism ; Neoplasms, Experimental - pathology ; Oncology ; original-article ; Phosphorylation ; Phosphorylation - drug effects ; Phosphorylation - genetics ; Piperazines - pharmacology ; Protein kinase C ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Oncogene, 2015-11, Vol.34 (45), p.5617-5625</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</citedby><cites>FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2015.32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2015.32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25728673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, X</creatorcontrib><creatorcontrib>Ou, Z</creatorcontrib><creatorcontrib>Xie, M</creatorcontrib><creatorcontrib>Kang, R</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Niu, X</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Cao, L</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><title>HSPB1 as a novel regulator of ferroptotic cancer cell death</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.</description><subject>13/89</subject><subject>631/67/1059/2326</subject><subject>96/109</subject><subject>96/2</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell Death</subject><subject>Complications and side effects</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Ferroptosis</subject><subject>Heat shock factors</subject><subject>Heat shock proteins</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat-Shock Response - drug effects</subject><subject>Heat-Shock Response - genetics</subject><subject>HeLa Cells</subject><subject>HSF1 protein</subject><subject>HSP27 Heat-Shock Proteins - genetics</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Influence</subject><subject>Internal Medicine</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - genetics</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphorylation - genetics</subject><subject>Piperazines - pharmacology</subject><subject>Protein kinase C</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt1LHDEUxUNR6tb61PcS8KXQzjbfHwiCSqsFoYXW55DJJOvIbLImMwv9782yVqv4IHm4kPu7h3sPB4APGM0xouprim5OEOZzSt6AGWZSNJxrtgNmSHPUaELJHnhXyg1CSGpE3oI9wiVRQtIZOLr4_esUQ1ughTGt_QCzX0yDHVOGKcDgc06rMY29g85G5zN0fhhg5-14_R7sBjsUf3Bf98HV929_zi6ay5_nP85OLhsnsBgbzoKgTjEbAiK0Y0i3jnLsbFCaMKkYskrwjrQdoVLJoDvFWs2clkGGllK6D463uqupXfrO-ThmO5hV7pc2_zXJ9uZpJ_bXZpHWhgmGsMJV4NO9QE63ky-jWfZlc4eNPk3FYCm4VhRr_QqU4rpkNbKih8_QmzTlWJ0whFIsMFdSPFILO3jTx5Dqim4jak4YZUIjLVWl5i9Q9XV-2bsUfejr_5OBz9sBl1Mp2YcHOzAym1iYGguziYWhpNIf_3fwgf2Xgwp82QKltuLC58dbXtK7AxLkvjI</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Sun, X</creator><creator>Ou, Z</creator><creator>Xie, M</creator><creator>Kang, R</creator><creator>Fan, Y</creator><creator>Niu, X</creator><creator>Wang, H</creator><creator>Cao, L</creator><creator>Tang, D</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151105</creationdate><title>HSPB1 as a novel regulator of ferroptotic cancer cell death</title><author>Sun, X ; Ou, Z ; Xie, M ; Kang, R ; Fan, Y ; Niu, X ; Wang, H ; Cao, L ; Tang, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-54f63c84aff023d409bc351caf89247840a865d2bd23787f9d84b94c97f7fb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/89</topic><topic>631/67/1059/2326</topic><topic>96/109</topic><topic>96/2</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell Death</topic><topic>Complications and side effects</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Ferroptosis</topic><topic>Heat shock factors</topic><topic>Heat shock proteins</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat-Shock Response - drug effects</topic><topic>Heat-Shock Response - genetics</topic><topic>HeLa Cells</topic><topic>HSF1 protein</topic><topic>HSP27 Heat-Shock Proteins - genetics</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Influence</topic><topic>Internal Medicine</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - genetics</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphorylation - genetics</topic><topic>Piperazines - pharmacology</topic><topic>Protein kinase C</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, X</creatorcontrib><creatorcontrib>Ou, Z</creatorcontrib><creatorcontrib>Xie, M</creatorcontrib><creatorcontrib>Kang, R</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Niu, X</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Cao, L</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, X</au><au>Ou, Z</au><au>Xie, M</au><au>Kang, R</au><au>Fan, Y</au><au>Niu, X</au><au>Wang, H</au><au>Cao, L</au><au>Tang, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HSPB1 as a novel regulator of ferroptotic cancer cell death</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-11-05</date><risdate>2015</risdate><volume>34</volume><issue>45</issue><spage>5617</spage><epage>5625</epage><pages>5617-5625</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25728673</pmid><doi>10.1038/onc.2015.32</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2015-11, Vol.34 (45), p.5617-5625
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4640181
source MEDLINE; Springer Nature - Complete Springer Journals; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 13/89
631/67/1059/2326
96/109
96/2
Analysis
Animal models
Animals
Antitumor activity
Apoptosis
Biochemistry
Cancer
Care and treatment
Cell Biology
Cell Death
Complications and side effects
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Ferroptosis
Heat shock factors
Heat shock proteins
Heat Shock Transcription Factors
Heat-Shock Response - drug effects
Heat-Shock Response - genetics
HeLa Cells
HSF1 protein
HSP27 Heat-Shock Proteins - genetics
HSP27 Heat-Shock Proteins - metabolism
Human Genetics
Humans
Influence
Internal Medicine
Iron
Iron - metabolism
Kinases
Medicine
Medicine & Public Health
Mice
Mice, Inbred NOD
Mice, SCID
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Neoplasms, Experimental - drug therapy
Neoplasms, Experimental - genetics
Neoplasms, Experimental - metabolism
Neoplasms, Experimental - pathology
Oncology
original-article
Phosphorylation
Phosphorylation - drug effects
Phosphorylation - genetics
Piperazines - pharmacology
Protein kinase C
Reactive oxygen species
Reactive Oxygen Species - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Xenograft Model Antitumor Assays
Xenografts
title HSPB1 as a novel regulator of ferroptotic cancer cell death
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HSPB1%20as%20a%20novel%20regulator%20of%20ferroptotic%20cancer%20cell%20death&rft.jtitle=Oncogene&rft.au=Sun,%20X&rft.date=2015-11-05&rft.volume=34&rft.issue=45&rft.spage=5617&rft.epage=5625&rft.pages=5617-5625&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2015.32&rft_dat=%3Cgale_pubme%3EA434690978%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331615876&rft_id=info:pmid/25728673&rft_galeid=A434690978&rfr_iscdi=true