Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice
Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adeno...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2015-07, Vol.22 (11), p.876-882 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 11 |
container_start_page | 876 |
container_title | Gene therapy |
container_volume | 22 |
creator | Li, Rongying Buras, Eric Lee, Jeongkyung Liu, Ruya Liu, Victoria Espiritu, Christie Ozer, Kerem Thompson, Bonnie Nally, Laura Yuan, Guoyue Oka, Kazuhiro Chang, Benny Samson, Susan Yechoor, Vijay Chan, Lawrence |
description | Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing
in vivo
islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus (HDAd) carrying neurogenin3, an islet lineage-defining transcription factor and betacellulin, an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these ‘neo-islets’ from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with neurogenin3 and betacellulin. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing ‘neo-islets’ in treated mouse livers. Despite evidence of persistent ‘insulitis’ with activated T-cells, these ‘neo-islets’ persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering
in vivo
islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice. |
doi_str_mv | 10.1038/gt.2015.62 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4636470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4636470</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_46364703</originalsourceid><addsrcrecordid>eNqljL1OwzAYAC1E1QbahSfwA5Dw2XHtdGGg5WehlWh3y00_EiPXiWynqG9PBxZmpjvppCPkjkHBoKwemlRwYPNC8iuSMaFkPheSX5MMFnKRK8arCbmJ8QsAhKr4mEy4ZIqDUhnZvaJHmloMpj_Tb5tausYhdA1668t7-oTJ1Ojc4Kynxh_odrPc5ox-4AlDxEhX1uwxXeTS15sVfbc1Tsno07iIs1_ekseX593yLe-H_REPNfoUjNN9sEcTzrozVv8t3ra66U5ayFIKBeW_Bz_8AlzB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Rongying ; Buras, Eric ; Lee, Jeongkyung ; Liu, Ruya ; Liu, Victoria ; Espiritu, Christie ; Ozer, Kerem ; Thompson, Bonnie ; Nally, Laura ; Yuan, Guoyue ; Oka, Kazuhiro ; Chang, Benny ; Samson, Susan ; Yechoor, Vijay ; Chan, Lawrence</creator><creatorcontrib>Li, Rongying ; Buras, Eric ; Lee, Jeongkyung ; Liu, Ruya ; Liu, Victoria ; Espiritu, Christie ; Ozer, Kerem ; Thompson, Bonnie ; Nally, Laura ; Yuan, Guoyue ; Oka, Kazuhiro ; Chang, Benny ; Samson, Susan ; Yechoor, Vijay ; Chan, Lawrence</creatorcontrib><description>Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing
in vivo
islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus (HDAd) carrying neurogenin3, an islet lineage-defining transcription factor and betacellulin, an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these ‘neo-islets’ from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with neurogenin3 and betacellulin. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing ‘neo-islets’ in treated mouse livers. Despite evidence of persistent ‘insulitis’ with activated T-cells, these ‘neo-islets’ persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering
in vivo
islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2015.62</identifier><identifier>PMID: 26172077</identifier><language>eng</language><ispartof>Gene therapy, 2015-07, Vol.22 (11), p.876-882</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Rongying</creatorcontrib><creatorcontrib>Buras, Eric</creatorcontrib><creatorcontrib>Lee, Jeongkyung</creatorcontrib><creatorcontrib>Liu, Ruya</creatorcontrib><creatorcontrib>Liu, Victoria</creatorcontrib><creatorcontrib>Espiritu, Christie</creatorcontrib><creatorcontrib>Ozer, Kerem</creatorcontrib><creatorcontrib>Thompson, Bonnie</creatorcontrib><creatorcontrib>Nally, Laura</creatorcontrib><creatorcontrib>Yuan, Guoyue</creatorcontrib><creatorcontrib>Oka, Kazuhiro</creatorcontrib><creatorcontrib>Chang, Benny</creatorcontrib><creatorcontrib>Samson, Susan</creatorcontrib><creatorcontrib>Yechoor, Vijay</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><title>Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice</title><title>Gene therapy</title><description>Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing
in vivo
islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus (HDAd) carrying neurogenin3, an islet lineage-defining transcription factor and betacellulin, an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these ‘neo-islets’ from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with neurogenin3 and betacellulin. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing ‘neo-islets’ in treated mouse livers. Despite evidence of persistent ‘insulitis’ with activated T-cells, these ‘neo-islets’ persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering
in vivo
islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice.</description><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqljL1OwzAYAC1E1QbahSfwA5Dw2XHtdGGg5WehlWh3y00_EiPXiWynqG9PBxZmpjvppCPkjkHBoKwemlRwYPNC8iuSMaFkPheSX5MMFnKRK8arCbmJ8QsAhKr4mEy4ZIqDUhnZvaJHmloMpj_Tb5tausYhdA1668t7-oTJ1Ojc4Kynxh_odrPc5ox-4AlDxEhX1uwxXeTS15sVfbc1Tsno07iIs1_ekseX593yLe-H_REPNfoUjNN9sEcTzrozVv8t3ra66U5ayFIKBeW_Bz_8AlzB</recordid><startdate>20150714</startdate><enddate>20150714</enddate><creator>Li, Rongying</creator><creator>Buras, Eric</creator><creator>Lee, Jeongkyung</creator><creator>Liu, Ruya</creator><creator>Liu, Victoria</creator><creator>Espiritu, Christie</creator><creator>Ozer, Kerem</creator><creator>Thompson, Bonnie</creator><creator>Nally, Laura</creator><creator>Yuan, Guoyue</creator><creator>Oka, Kazuhiro</creator><creator>Chang, Benny</creator><creator>Samson, Susan</creator><creator>Yechoor, Vijay</creator><creator>Chan, Lawrence</creator><scope>5PM</scope></search><sort><creationdate>20150714</creationdate><title>Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice</title><author>Li, Rongying ; Buras, Eric ; Lee, Jeongkyung ; Liu, Ruya ; Liu, Victoria ; Espiritu, Christie ; Ozer, Kerem ; Thompson, Bonnie ; Nally, Laura ; Yuan, Guoyue ; Oka, Kazuhiro ; Chang, Benny ; Samson, Susan ; Yechoor, Vijay ; Chan, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_46364703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Rongying</creatorcontrib><creatorcontrib>Buras, Eric</creatorcontrib><creatorcontrib>Lee, Jeongkyung</creatorcontrib><creatorcontrib>Liu, Ruya</creatorcontrib><creatorcontrib>Liu, Victoria</creatorcontrib><creatorcontrib>Espiritu, Christie</creatorcontrib><creatorcontrib>Ozer, Kerem</creatorcontrib><creatorcontrib>Thompson, Bonnie</creatorcontrib><creatorcontrib>Nally, Laura</creatorcontrib><creatorcontrib>Yuan, Guoyue</creatorcontrib><creatorcontrib>Oka, Kazuhiro</creatorcontrib><creatorcontrib>Chang, Benny</creatorcontrib><creatorcontrib>Samson, Susan</creatorcontrib><creatorcontrib>Yechoor, Vijay</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Rongying</au><au>Buras, Eric</au><au>Lee, Jeongkyung</au><au>Liu, Ruya</au><au>Liu, Victoria</au><au>Espiritu, Christie</au><au>Ozer, Kerem</au><au>Thompson, Bonnie</au><au>Nally, Laura</au><au>Yuan, Guoyue</au><au>Oka, Kazuhiro</au><au>Chang, Benny</au><au>Samson, Susan</au><au>Yechoor, Vijay</au><au>Chan, Lawrence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice</atitle><jtitle>Gene therapy</jtitle><date>2015-07-14</date><risdate>2015</risdate><volume>22</volume><issue>11</issue><spage>876</spage><epage>882</epage><pages>876-882</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Islet transplantation for Type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing
in vivo
islet neogenesis in NOD diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus (HDAd) carrying neurogenin3, an islet lineage-defining transcription factor and betacellulin, an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these ‘neo-islets’ from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with neurogenin3 and betacellulin. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing ‘neo-islets’ in treated mouse livers. Despite evidence of persistent ‘insulitis’ with activated T-cells, these ‘neo-islets’ persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering
in vivo
islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice.</abstract><pmid>26172077</pmid><doi>10.1038/gt.2015.62</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2015-07, Vol.22 (11), p.876-882 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4636470 |
source | EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings |
title | Gene therapy with Neurogenin3, Betacellulin and SOCS-1 Reverses Diabetes in NOD Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20therapy%20with%20Neurogenin3,%20Betacellulin%20and%20SOCS-1%20Reverses%20Diabetes%20in%20NOD%20Mice&rft.jtitle=Gene%20therapy&rft.au=Li,%20Rongying&rft.date=2015-07-14&rft.volume=22&rft.issue=11&rft.spage=876&rft.epage=882&rft.pages=876-882&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2015.62&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4636470%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26172077&rfr_iscdi=true |