Multimodality Computer-Aided Breast Cancer Diagnosis with FFDM and DCE-MRI
Rationale and Objectives To investigate a multimodality computer-aided diagnosis (CAD) scheme that combines image information from full-field digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for computerized breast cancer classification. Materials and Met...
Gespeichert in:
Veröffentlicht in: | Academic radiology 2010-09, Vol.17 (9), p.1158-1167 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 9 |
container_start_page | 1158 |
container_title | Academic radiology |
container_volume | 17 |
creator | Yuan, Yading, BS Giger, Maryellen L., PhD Li, Hui, PhD Bhooshan, Neha, MS Sennett, Charlene A., MD |
description | Rationale and Objectives To investigate a multimodality computer-aided diagnosis (CAD) scheme that combines image information from full-field digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for computerized breast cancer classification. Materials and Methods From a retrospective FFDM database with 432 lesions (255 malignant, 177 benign) and a retrospective DCE-MRI database including 476 lesions (347 malignant, 129 benign), we constructed a multimodality dataset of 213 lesions (168 malignant, 45 benign). Each lesion was present on both FFDM and DCE-MRI images and deemed to be a difficult case given the necessity of having both clinical imaging exams. Using a manually indicated lesion location (ie, a seed point on FFDM images or a region of interest on DCE-MRI images, the computer automatically segmented the mass lesions and extracted lesion features). A subset of features was selected using linear stepwise feature selection and merged by a Bayesian artificial neural network to yield an estimate of the probability of malignancy. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the selected features in distinguishing between malignant and benign lesions. Results With leave-one-lesion-out cross-validation on the multimodality dataset, the mammography-only features yielded an area under the ROC curve (AUC) of 0.74 ± 0.04, and the DCE-MRI-only features yielded an AUC of 0.78 ± 0.04. The combination of these two modalities, which included a spiculation feature from mammography and two kinetic features from DCE-MRI, yielded an AUC of 0.87 ± 0.03. The improvement of combining multimodality information was statistically significant as compared to the use of single modality information alone. Conclusions A CAD scheme that combines features extracted from FFDM and DCE-MRI images may be advantageous to single-modality CAD in the task of differentiating between malignant and benign lesions. |
doi_str_mv | 10.1016/j.acra.2010.04.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4634529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633210002369</els_id><sourcerecordid>748955655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-55fecb017def02d51e030e02c43f00d34321aa61151b15d9f502d05af0b703593</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoqXwAixQdqwyXNuxM5FQpZLpQFFHSPysrzz2TeshiQc7KZq3x9GUCliwsmV_59g652bZSwYLBky92S20CXrBIR1AuQAmH2WnbFktixJK9TjtoVKFEoKfZM9i3EEi1FI8zU44qJorDqfZx83Uja73VnduPOSN7_fTSKG4cJZs_i6QjmPe6MFQyFdO3ww-upj_dONtvl6vNrkebL5qLovN56vn2ZNWd5Fe3K9n2bf15dfmQ3H96f1Vc3FdGAn1WEjZktkCqyy1wK1kBAIIuClFC2BFKTjTWjEm2ZZJW7cyUSB1C9sKhKzFWXZ-9N1P256soWEMusN9cL0OB_Ta4d83g7vFG3-HpRKl5LPB63uD4H9MFEfsXTTUdXogP0WsymUtpZIykfxImuBjDNQ-vMIA5w5wh3MHOHeAUGJKOIle_fm_B8nv0BPw9ghQSunOUcBoHKWIrQtkRrTe_d___B-56dzgjO6-04Hizk9hSPkjw8gR8Ms8BfMQMADgQtXiF3cnq44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748955655</pqid></control><display><type>article</type><title>Multimodality Computer-Aided Breast Cancer Diagnosis with FFDM and DCE-MRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yuan, Yading, BS ; Giger, Maryellen L., PhD ; Li, Hui, PhD ; Bhooshan, Neha, MS ; Sennett, Charlene A., MD</creator><creatorcontrib>Yuan, Yading, BS ; Giger, Maryellen L., PhD ; Li, Hui, PhD ; Bhooshan, Neha, MS ; Sennett, Charlene A., MD</creatorcontrib><description>Rationale and Objectives To investigate a multimodality computer-aided diagnosis (CAD) scheme that combines image information from full-field digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for computerized breast cancer classification. Materials and Methods From a retrospective FFDM database with 432 lesions (255 malignant, 177 benign) and a retrospective DCE-MRI database including 476 lesions (347 malignant, 129 benign), we constructed a multimodality dataset of 213 lesions (168 malignant, 45 benign). Each lesion was present on both FFDM and DCE-MRI images and deemed to be a difficult case given the necessity of having both clinical imaging exams. Using a manually indicated lesion location (ie, a seed point on FFDM images or a region of interest on DCE-MRI images, the computer automatically segmented the mass lesions and extracted lesion features). A subset of features was selected using linear stepwise feature selection and merged by a Bayesian artificial neural network to yield an estimate of the probability of malignancy. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the selected features in distinguishing between malignant and benign lesions. Results With leave-one-lesion-out cross-validation on the multimodality dataset, the mammography-only features yielded an area under the ROC curve (AUC) of 0.74 ± 0.04, and the DCE-MRI-only features yielded an AUC of 0.78 ± 0.04. The combination of these two modalities, which included a spiculation feature from mammography and two kinetic features from DCE-MRI, yielded an AUC of 0.87 ± 0.03. The improvement of combining multimodality information was statistically significant as compared to the use of single modality information alone. Conclusions A CAD scheme that combines features extracted from FFDM and DCE-MRI images may be advantageous to single-modality CAD in the task of differentiating between malignant and benign lesions.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2010.04.015</identifier><identifier>PMID: 20692620</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Breast cancer ; Breast Neoplasms - diagnosis ; Cluster Analysis ; computer-aided diagnosis ; dynamic contrast enhanced magnetic resonance imaging ; Female ; full-field digital mammography ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Mammography - methods ; multimodality imaging ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiology ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique</subject><ispartof>Academic radiology, 2010-09, Vol.17 (9), p.1158-1167</ispartof><rights>AUR</rights><rights>2010 AUR</rights><rights>Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-55fecb017def02d51e030e02c43f00d34321aa61151b15d9f502d05af0b703593</citedby><cites>FETCH-LOGICAL-c509t-55fecb017def02d51e030e02c43f00d34321aa61151b15d9f502d05af0b703593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1076633210002369$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20692620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Yading, BS</creatorcontrib><creatorcontrib>Giger, Maryellen L., PhD</creatorcontrib><creatorcontrib>Li, Hui, PhD</creatorcontrib><creatorcontrib>Bhooshan, Neha, MS</creatorcontrib><creatorcontrib>Sennett, Charlene A., MD</creatorcontrib><title>Multimodality Computer-Aided Breast Cancer Diagnosis with FFDM and DCE-MRI</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>Rationale and Objectives To investigate a multimodality computer-aided diagnosis (CAD) scheme that combines image information from full-field digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for computerized breast cancer classification. Materials and Methods From a retrospective FFDM database with 432 lesions (255 malignant, 177 benign) and a retrospective DCE-MRI database including 476 lesions (347 malignant, 129 benign), we constructed a multimodality dataset of 213 lesions (168 malignant, 45 benign). Each lesion was present on both FFDM and DCE-MRI images and deemed to be a difficult case given the necessity of having both clinical imaging exams. Using a manually indicated lesion location (ie, a seed point on FFDM images or a region of interest on DCE-MRI images, the computer automatically segmented the mass lesions and extracted lesion features). A subset of features was selected using linear stepwise feature selection and merged by a Bayesian artificial neural network to yield an estimate of the probability of malignancy. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the selected features in distinguishing between malignant and benign lesions. Results With leave-one-lesion-out cross-validation on the multimodality dataset, the mammography-only features yielded an area under the ROC curve (AUC) of 0.74 ± 0.04, and the DCE-MRI-only features yielded an AUC of 0.78 ± 0.04. The combination of these two modalities, which included a spiculation feature from mammography and two kinetic features from DCE-MRI, yielded an AUC of 0.87 ± 0.03. The improvement of combining multimodality information was statistically significant as compared to the use of single modality information alone. Conclusions A CAD scheme that combines features extracted from FFDM and DCE-MRI images may be advantageous to single-modality CAD in the task of differentiating between malignant and benign lesions.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Cluster Analysis</subject><subject>computer-aided diagnosis</subject><subject>dynamic contrast enhanced magnetic resonance imaging</subject><subject>Female</subject><subject>full-field digital mammography</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mammography - methods</subject><subject>multimodality imaging</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1u1DAUhSMEoqXwAixQdqwyXNuxM5FQpZLpQFFHSPysrzz2TeshiQc7KZq3x9GUCliwsmV_59g652bZSwYLBky92S20CXrBIR1AuQAmH2WnbFktixJK9TjtoVKFEoKfZM9i3EEi1FI8zU44qJorDqfZx83Uja73VnduPOSN7_fTSKG4cJZs_i6QjmPe6MFQyFdO3ww-upj_dONtvl6vNrkebL5qLovN56vn2ZNWd5Fe3K9n2bf15dfmQ3H96f1Vc3FdGAn1WEjZktkCqyy1wK1kBAIIuClFC2BFKTjTWjEm2ZZJW7cyUSB1C9sKhKzFWXZ-9N1P256soWEMusN9cL0OB_Ta4d83g7vFG3-HpRKl5LPB63uD4H9MFEfsXTTUdXogP0WsymUtpZIykfxImuBjDNQ-vMIA5w5wh3MHOHeAUGJKOIle_fm_B8nv0BPw9ghQSunOUcBoHKWIrQtkRrTe_d___B-56dzgjO6-04Hizk9hSPkjw8gR8Ms8BfMQMADgQtXiF3cnq44</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Yuan, Yading, BS</creator><creator>Giger, Maryellen L., PhD</creator><creator>Li, Hui, PhD</creator><creator>Bhooshan, Neha, MS</creator><creator>Sennett, Charlene A., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100901</creationdate><title>Multimodality Computer-Aided Breast Cancer Diagnosis with FFDM and DCE-MRI</title><author>Yuan, Yading, BS ; Giger, Maryellen L., PhD ; Li, Hui, PhD ; Bhooshan, Neha, MS ; Sennett, Charlene A., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-55fecb017def02d51e030e02c43f00d34321aa61151b15d9f502d05af0b703593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Cluster Analysis</topic><topic>computer-aided diagnosis</topic><topic>dynamic contrast enhanced magnetic resonance imaging</topic><topic>Female</topic><topic>full-field digital mammography</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mammography - methods</topic><topic>multimodality imaging</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yading, BS</creatorcontrib><creatorcontrib>Giger, Maryellen L., PhD</creatorcontrib><creatorcontrib>Li, Hui, PhD</creatorcontrib><creatorcontrib>Bhooshan, Neha, MS</creatorcontrib><creatorcontrib>Sennett, Charlene A., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yading, BS</au><au>Giger, Maryellen L., PhD</au><au>Li, Hui, PhD</au><au>Bhooshan, Neha, MS</au><au>Sennett, Charlene A., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodality Computer-Aided Breast Cancer Diagnosis with FFDM and DCE-MRI</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>17</volume><issue>9</issue><spage>1158</spage><epage>1167</epage><pages>1158-1167</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Rationale and Objectives To investigate a multimodality computer-aided diagnosis (CAD) scheme that combines image information from full-field digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for computerized breast cancer classification. Materials and Methods From a retrospective FFDM database with 432 lesions (255 malignant, 177 benign) and a retrospective DCE-MRI database including 476 lesions (347 malignant, 129 benign), we constructed a multimodality dataset of 213 lesions (168 malignant, 45 benign). Each lesion was present on both FFDM and DCE-MRI images and deemed to be a difficult case given the necessity of having both clinical imaging exams. Using a manually indicated lesion location (ie, a seed point on FFDM images or a region of interest on DCE-MRI images, the computer automatically segmented the mass lesions and extracted lesion features). A subset of features was selected using linear stepwise feature selection and merged by a Bayesian artificial neural network to yield an estimate of the probability of malignancy. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the selected features in distinguishing between malignant and benign lesions. Results With leave-one-lesion-out cross-validation on the multimodality dataset, the mammography-only features yielded an area under the ROC curve (AUC) of 0.74 ± 0.04, and the DCE-MRI-only features yielded an AUC of 0.78 ± 0.04. The combination of these two modalities, which included a spiculation feature from mammography and two kinetic features from DCE-MRI, yielded an AUC of 0.87 ± 0.03. The improvement of combining multimodality information was statistically significant as compared to the use of single modality information alone. Conclusions A CAD scheme that combines features extracted from FFDM and DCE-MRI images may be advantageous to single-modality CAD in the task of differentiating between malignant and benign lesions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20692620</pmid><doi>10.1016/j.acra.2010.04.015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-6332 |
ispartof | Academic radiology, 2010-09, Vol.17 (9), p.1158-1167 |
issn | 1076-6332 1878-4046 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4634529 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Artificial Intelligence Breast cancer Breast Neoplasms - diagnosis Cluster Analysis computer-aided diagnosis dynamic contrast enhanced magnetic resonance imaging Female full-field digital mammography Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Mammography - methods multimodality imaging Pattern Recognition, Automated - methods Radiographic Image Enhancement - methods Radiology Reproducibility of Results Sensitivity and Specificity Subtraction Technique |
title | Multimodality Computer-Aided Breast Cancer Diagnosis with FFDM and DCE-MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodality%20Computer-Aided%20Breast%20Cancer%20Diagnosis%20with%20FFDM%20and%20DCE-MRI&rft.jtitle=Academic%20radiology&rft.au=Yuan,%20Yading,%20BS&rft.date=2010-09-01&rft.volume=17&rft.issue=9&rft.spage=1158&rft.epage=1167&rft.pages=1158-1167&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2010.04.015&rft_dat=%3Cproquest_pubme%3E748955655%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748955655&rft_id=info:pmid/20692620&rft_els_id=S1076633210002369&rfr_iscdi=true |