Uniaxial stress control of skyrmion phase

Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-10, Vol.6 (1), p.8539-8539, Article 8539
Hauptverfasser: Nii, Y., Nakajima, T., Kikkawa, A., Yamasaki, Y., Ohishi, K., Suzuki, J., Taguchi, Y., Arima, T., Tokura, Y., Iwasa, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8539
container_issue 1
container_start_page 8539
container_title Nature communications
container_volume 6
creator Nii, Y.
Nakajima, T.
Kikkawa, A.
Yamasaki, Y.
Ohishi, K.
Suzuki, J.
Taguchi, Y.
Arima, T.
Tokura, Y.
Iwasa, Y.
description Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy. Chiral magnets can support particle-like magnetization textures called skyrmions which form in lattices and can be manipulated for potential device applications. Here, the authors demonstrate the controlled creation and annihilation of a skyrmion lattice in MnSi single crystals using mechanical stress.
doi_str_mv 10.1038/ncomms9539
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722186010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-3976f0d7e18cbebdb819685fb60ae72c65cebbde063ac1e276351d1e8527597d3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTuZu_AFS8MYPqjlNm6Y3ggy_YOCNuw5perp1ts1MVnH_3ozNOTU3CZyHJ-85h5AToNdAmbhptWkalyUs2yNHEY0hhDRi-zvvHhk4N6P-sAxEHB-SXsRjTgGyI3Ixbiv1Wak6cAuLzgXatAtr6sCUgXtb2qYybTCfKofH5KBUtcPB5u6T8cP96_ApHL08Pg_vRqFOqFiELEt5SYsUQegc8yIXkHGRlDmnCtNI80RjnhdIOVMaMEo5S6AAFEmUJllasD65XXvnXd5godHnUbWc26pRdimNquTvSltN5cR8yJgzJiD2gvONwJr3Dt1CNpXTWNeqRdM56WcSgfD9U4-e_UFnprOtb29FgRdCuhJeriltjXMWy20YoHK1BPmzBA-f7sbfot8j98DVGnC-1E7Q7vz5X_cFD6mRtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721633174</pqid></control><display><type>article</type><title>Uniaxial stress control of skyrmion phase</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Nii, Y. ; Nakajima, T. ; Kikkawa, A. ; Yamasaki, Y. ; Ohishi, K. ; Suzuki, J. ; Taguchi, Y. ; Arima, T. ; Tokura, Y. ; Iwasa, Y.</creator><creatorcontrib>Nii, Y. ; Nakajima, T. ; Kikkawa, A. ; Yamasaki, Y. ; Ohishi, K. ; Suzuki, J. ; Taguchi, Y. ; Arima, T. ; Tokura, Y. ; Iwasa, Y.</creatorcontrib><description>Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy. Chiral magnets can support particle-like magnetization textures called skyrmions which form in lattices and can be manipulated for potential device applications. Here, the authors demonstrate the controlled creation and annihilation of a skyrmion lattice in MnSi single crystals using mechanical stress.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9539</identifier><identifier>PMID: 26460119</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/997 ; 639/766/25 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-10, Vol.6 (1), p.8539-8539, Article 8539</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-3976f0d7e18cbebdb819685fb60ae72c65cebbde063ac1e276351d1e8527597d3</citedby><cites>FETCH-LOGICAL-c508t-3976f0d7e18cbebdb819685fb60ae72c65cebbde063ac1e276351d1e8527597d3</cites><orcidid>0000-0001-6557-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633814/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633814/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26460119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nii, Y.</creatorcontrib><creatorcontrib>Nakajima, T.</creatorcontrib><creatorcontrib>Kikkawa, A.</creatorcontrib><creatorcontrib>Yamasaki, Y.</creatorcontrib><creatorcontrib>Ohishi, K.</creatorcontrib><creatorcontrib>Suzuki, J.</creatorcontrib><creatorcontrib>Taguchi, Y.</creatorcontrib><creatorcontrib>Arima, T.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><creatorcontrib>Iwasa, Y.</creatorcontrib><title>Uniaxial stress control of skyrmion phase</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy. Chiral magnets can support particle-like magnetization textures called skyrmions which form in lattices and can be manipulated for potential device applications. Here, the authors demonstrate the controlled creation and annihilation of a skyrmion lattice in MnSi single crystals using mechanical stress.</description><subject>639/766/119/997</subject><subject>639/766/25</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1LwzAUhoMoTuZu_AFS8MYPqjlNm6Y3ggy_YOCNuw5perp1ts1MVnH_3ozNOTU3CZyHJ-85h5AToNdAmbhptWkalyUs2yNHEY0hhDRi-zvvHhk4N6P-sAxEHB-SXsRjTgGyI3Ixbiv1Wak6cAuLzgXatAtr6sCUgXtb2qYybTCfKofH5KBUtcPB5u6T8cP96_ApHL08Pg_vRqFOqFiELEt5SYsUQegc8yIXkHGRlDmnCtNI80RjnhdIOVMaMEo5S6AAFEmUJllasD65XXvnXd5godHnUbWc26pRdimNquTvSltN5cR8yJgzJiD2gvONwJr3Dt1CNpXTWNeqRdM56WcSgfD9U4-e_UFnprOtb29FgRdCuhJeriltjXMWy20YoHK1BPmzBA-f7sbfot8j98DVGnC-1E7Q7vz5X_cFD6mRtg</recordid><startdate>20151013</startdate><enddate>20151013</enddate><creator>Nii, Y.</creator><creator>Nakajima, T.</creator><creator>Kikkawa, A.</creator><creator>Yamasaki, Y.</creator><creator>Ohishi, K.</creator><creator>Suzuki, J.</creator><creator>Taguchi, Y.</creator><creator>Arima, T.</creator><creator>Tokura, Y.</creator><creator>Iwasa, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6557-5508</orcidid></search><sort><creationdate>20151013</creationdate><title>Uniaxial stress control of skyrmion phase</title><author>Nii, Y. ; Nakajima, T. ; Kikkawa, A. ; Yamasaki, Y. ; Ohishi, K. ; Suzuki, J. ; Taguchi, Y. ; Arima, T. ; Tokura, Y. ; Iwasa, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-3976f0d7e18cbebdb819685fb60ae72c65cebbde063ac1e276351d1e8527597d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/119/997</topic><topic>639/766/25</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nii, Y.</creatorcontrib><creatorcontrib>Nakajima, T.</creatorcontrib><creatorcontrib>Kikkawa, A.</creatorcontrib><creatorcontrib>Yamasaki, Y.</creatorcontrib><creatorcontrib>Ohishi, K.</creatorcontrib><creatorcontrib>Suzuki, J.</creatorcontrib><creatorcontrib>Taguchi, Y.</creatorcontrib><creatorcontrib>Arima, T.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><creatorcontrib>Iwasa, Y.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nii, Y.</au><au>Nakajima, T.</au><au>Kikkawa, A.</au><au>Yamasaki, Y.</au><au>Ohishi, K.</au><au>Suzuki, J.</au><au>Taguchi, Y.</au><au>Arima, T.</au><au>Tokura, Y.</au><au>Iwasa, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniaxial stress control of skyrmion phase</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-10-13</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8539</spage><epage>8539</epage><pages>8539-8539</pages><artnum>8539</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy. Chiral magnets can support particle-like magnetization textures called skyrmions which form in lattices and can be manipulated for potential device applications. Here, the authors demonstrate the controlled creation and annihilation of a skyrmion lattice in MnSi single crystals using mechanical stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26460119</pmid><doi>10.1038/ncomms9539</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6557-5508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-10, Vol.6 (1), p.8539-8539, Article 8539
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633814
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 639/766/119/997
639/766/25
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Uniaxial stress control of skyrmion phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniaxial%20stress%20control%20of%20skyrmion%20phase&rft.jtitle=Nature%20communications&rft.au=Nii,%20Y.&rft.date=2015-10-13&rft.volume=6&rft.issue=1&rft.spage=8539&rft.epage=8539&rft.pages=8539-8539&rft.artnum=8539&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9539&rft_dat=%3Cproquest_pubme%3E1722186010%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721633174&rft_id=info:pmid/26460119&rfr_iscdi=true