Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides

To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-11, Vol.49 (21), p.12879-12887
Hauptverfasser: Rumkee, Jack C. O, Becher, Matthias A, Thorbek, Pernille, Kennedy, Peter J, Osborne, Juliet L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12887
container_issue 21
container_start_page 12879
container_title Environmental science & technology
container_volume 49
creator Rumkee, Jack C. O
Becher, Matthias A
Thorbek, Pernille
Kennedy, Peter J
Osborne, Juliet L
description To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.
doi_str_mv 10.1021/acs.est.5b03593
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000217580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxYMo7rh69iYNXgSZ2aTS-WgPwjrMOsKKi7riLaTT1btZejpj0i3Mf2-aGccPEE851O-9vKpHyFNGF4wCO7MuLTANC1FTLip-j8yYADoXWrD7ZEYp4_OKy68n5FFKd5RS4FQ_JCcgy7LkWs5IexWx8W7w_U2xDj3uasRiGbrQ74oL67sx4qviOk3j4RaLN6vV-vzLqngfGuyKIRSf_Gbs7HDUfMS0DX3CNA2vcjTvfIPpMXnQ2i7hk8N7Sq4vVp-X6_nlh7fvlueXcyuADzm3VMzpSirBWwaYd2mxAteU0joqQSvVgNI1a5lusK5AobCspOCU41pofkpe7323Y73BxmE_RNuZbfQbG3cmWG_-nPT-1tyE76aUnCvFssGLg0EM38ac32x8cth1tscwJgPTEZkSmv4XZaqUuhIKeEaf_4XehTH2-RKZ4sABKEzhz_aUiyGliO0xN6Nmqtvkus2kPtSdFc9-X_fI_-w3Ay_3wKT89ec_7H4A2PG0ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732322028</pqid></control><display><type>article</type><title>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rumkee, Jack C. O ; Becher, Matthias A ; Thorbek, Pernille ; Kennedy, Peter J ; Osborne, Juliet L</creator><creatorcontrib>Rumkee, Jack C. O ; Becher, Matthias A ; Thorbek, Pernille ; Kennedy, Peter J ; Osborne, Juliet L</creatorcontrib><description>To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b03593</identifier><identifier>PMID: 26444386</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adults ; Animals ; Apis mellifera ; Bees ; Bees - drug effects ; Bees - physiology ; Failure ; honey bee colonies ; honey bees ; insect larvae ; Larva - drug effects ; lethal dose 50 ; Models, Biological ; Mortality ; nectar ; oviposition ; Pesticides ; Pesticides - toxicity ; Plant Nectar ; Pollen ; prediction ; Predictions ; Simulation ; simulation models ; Stress, Physiological ; Survival Rate</subject><ispartof>Environmental science &amp; technology, 2015-11, Vol.49 (21), p.12879-12887</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 3, 2015</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</citedby><cites>FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b03593$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b03593$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26444386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumkee, Jack C. O</creatorcontrib><creatorcontrib>Becher, Matthias A</creatorcontrib><creatorcontrib>Thorbek, Pernille</creatorcontrib><creatorcontrib>Kennedy, Peter J</creatorcontrib><creatorcontrib>Osborne, Juliet L</creatorcontrib><title>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.</description><subject>adults</subject><subject>Animals</subject><subject>Apis mellifera</subject><subject>Bees</subject><subject>Bees - drug effects</subject><subject>Bees - physiology</subject><subject>Failure</subject><subject>honey bee colonies</subject><subject>honey bees</subject><subject>insect larvae</subject><subject>Larva - drug effects</subject><subject>lethal dose 50</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>nectar</subject><subject>oviposition</subject><subject>Pesticides</subject><subject>Pesticides - toxicity</subject><subject>Plant Nectar</subject><subject>Pollen</subject><subject>prediction</subject><subject>Predictions</subject><subject>Simulation</subject><subject>simulation models</subject><subject>Stress, Physiological</subject><subject>Survival Rate</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc2LFDEQxYMo7rh69iYNXgSZ2aTS-WgPwjrMOsKKi7riLaTT1btZejpj0i3Mf2-aGccPEE851O-9vKpHyFNGF4wCO7MuLTANC1FTLip-j8yYADoXWrD7ZEYp4_OKy68n5FFKd5RS4FQ_JCcgy7LkWs5IexWx8W7w_U2xDj3uasRiGbrQ74oL67sx4qviOk3j4RaLN6vV-vzLqngfGuyKIRSf_Gbs7HDUfMS0DX3CNA2vcjTvfIPpMXnQ2i7hk8N7Sq4vVp-X6_nlh7fvlueXcyuADzm3VMzpSirBWwaYd2mxAteU0joqQSvVgNI1a5lusK5AobCspOCU41pofkpe7323Y73BxmE_RNuZbfQbG3cmWG_-nPT-1tyE76aUnCvFssGLg0EM38ac32x8cth1tscwJgPTEZkSmv4XZaqUuhIKeEaf_4XehTH2-RKZ4sABKEzhz_aUiyGliO0xN6Nmqtvkus2kPtSdFc9-X_fI_-w3Ay_3wKT89ec_7H4A2PG0ow</recordid><startdate>20151103</startdate><enddate>20151103</enddate><creator>Rumkee, Jack C. O</creator><creator>Becher, Matthias A</creator><creator>Thorbek, Pernille</creator><creator>Kennedy, Peter J</creator><creator>Osborne, Juliet L</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7SS</scope><scope>7T2</scope><scope>7U2</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151103</creationdate><title>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</title><author>Rumkee, Jack C. O ; Becher, Matthias A ; Thorbek, Pernille ; Kennedy, Peter J ; Osborne, Juliet L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adults</topic><topic>Animals</topic><topic>Apis mellifera</topic><topic>Bees</topic><topic>Bees - drug effects</topic><topic>Bees - physiology</topic><topic>Failure</topic><topic>honey bee colonies</topic><topic>honey bees</topic><topic>insect larvae</topic><topic>Larva - drug effects</topic><topic>lethal dose 50</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>nectar</topic><topic>oviposition</topic><topic>Pesticides</topic><topic>Pesticides - toxicity</topic><topic>Plant Nectar</topic><topic>Pollen</topic><topic>prediction</topic><topic>Predictions</topic><topic>Simulation</topic><topic>simulation models</topic><topic>Stress, Physiological</topic><topic>Survival Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumkee, Jack C. O</creatorcontrib><creatorcontrib>Becher, Matthias A</creatorcontrib><creatorcontrib>Thorbek, Pernille</creatorcontrib><creatorcontrib>Kennedy, Peter J</creatorcontrib><creatorcontrib>Osborne, Juliet L</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumkee, Jack C. O</au><au>Becher, Matthias A</au><au>Thorbek, Pernille</au><au>Kennedy, Peter J</au><au>Osborne, Juliet L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-11-03</date><risdate>2015</risdate><volume>49</volume><issue>21</issue><spage>12879</spage><epage>12887</epage><pages>12879-12887</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26444386</pmid><doi>10.1021/acs.est.5b03593</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-11, Vol.49 (21), p.12879-12887
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633771
source MEDLINE; American Chemical Society Journals
subjects adults
Animals
Apis mellifera
Bees
Bees - drug effects
Bees - physiology
Failure
honey bee colonies
honey bees
insect larvae
Larva - drug effects
lethal dose 50
Models, Biological
Mortality
nectar
oviposition
Pesticides
Pesticides - toxicity
Plant Nectar
Pollen
prediction
Predictions
Simulation
simulation models
Stress, Physiological
Survival Rate
title Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Honeybee%20Colony%20Failure:%20Using%20the%20BEEHAVE%20Model%20to%20Simulate%20Colony%20Responses%20to%20Pesticides&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Rumkee,%20Jack%20C.%20O&rft.date=2015-11-03&rft.volume=49&rft.issue=21&rft.spage=12879&rft.epage=12887&rft.pages=12879-12887&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b03593&rft_dat=%3Cproquest_pubme%3E2000217580%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732322028&rft_id=info:pmid/26444386&rfr_iscdi=true