Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides
To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applie...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2015-11, Vol.49 (21), p.12879-12887 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12887 |
---|---|
container_issue | 21 |
container_start_page | 12879 |
container_title | Environmental science & technology |
container_volume | 49 |
creator | Rumkee, Jack C. O Becher, Matthias A Thorbek, Pernille Kennedy, Peter J Osborne, Juliet L |
description | To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals. |
doi_str_mv | 10.1021/acs.est.5b03593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000217580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxYMo7rh69iYNXgSZ2aTS-WgPwjrMOsKKi7riLaTT1btZejpj0i3Mf2-aGccPEE851O-9vKpHyFNGF4wCO7MuLTANC1FTLip-j8yYADoXWrD7ZEYp4_OKy68n5FFKd5RS4FQ_JCcgy7LkWs5IexWx8W7w_U2xDj3uasRiGbrQ74oL67sx4qviOk3j4RaLN6vV-vzLqngfGuyKIRSf_Gbs7HDUfMS0DX3CNA2vcjTvfIPpMXnQ2i7hk8N7Sq4vVp-X6_nlh7fvlueXcyuADzm3VMzpSirBWwaYd2mxAteU0joqQSvVgNI1a5lusK5AobCspOCU41pofkpe7323Y73BxmE_RNuZbfQbG3cmWG_-nPT-1tyE76aUnCvFssGLg0EM38ac32x8cth1tscwJgPTEZkSmv4XZaqUuhIKeEaf_4XehTH2-RKZ4sABKEzhz_aUiyGliO0xN6Nmqtvkus2kPtSdFc9-X_fI_-w3Ay_3wKT89ec_7H4A2PG0ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732322028</pqid></control><display><type>article</type><title>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rumkee, Jack C. O ; Becher, Matthias A ; Thorbek, Pernille ; Kennedy, Peter J ; Osborne, Juliet L</creator><creatorcontrib>Rumkee, Jack C. O ; Becher, Matthias A ; Thorbek, Pernille ; Kennedy, Peter J ; Osborne, Juliet L</creatorcontrib><description>To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b03593</identifier><identifier>PMID: 26444386</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adults ; Animals ; Apis mellifera ; Bees ; Bees - drug effects ; Bees - physiology ; Failure ; honey bee colonies ; honey bees ; insect larvae ; Larva - drug effects ; lethal dose 50 ; Models, Biological ; Mortality ; nectar ; oviposition ; Pesticides ; Pesticides - toxicity ; Plant Nectar ; Pollen ; prediction ; Predictions ; Simulation ; simulation models ; Stress, Physiological ; Survival Rate</subject><ispartof>Environmental science & technology, 2015-11, Vol.49 (21), p.12879-12887</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 3, 2015</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</citedby><cites>FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b03593$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b03593$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26444386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumkee, Jack C. O</creatorcontrib><creatorcontrib>Becher, Matthias A</creatorcontrib><creatorcontrib>Thorbek, Pernille</creatorcontrib><creatorcontrib>Kennedy, Peter J</creatorcontrib><creatorcontrib>Osborne, Juliet L</creatorcontrib><title>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.</description><subject>adults</subject><subject>Animals</subject><subject>Apis mellifera</subject><subject>Bees</subject><subject>Bees - drug effects</subject><subject>Bees - physiology</subject><subject>Failure</subject><subject>honey bee colonies</subject><subject>honey bees</subject><subject>insect larvae</subject><subject>Larva - drug effects</subject><subject>lethal dose 50</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>nectar</subject><subject>oviposition</subject><subject>Pesticides</subject><subject>Pesticides - toxicity</subject><subject>Plant Nectar</subject><subject>Pollen</subject><subject>prediction</subject><subject>Predictions</subject><subject>Simulation</subject><subject>simulation models</subject><subject>Stress, Physiological</subject><subject>Survival Rate</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc2LFDEQxYMo7rh69iYNXgSZ2aTS-WgPwjrMOsKKi7riLaTT1btZejpj0i3Mf2-aGccPEE851O-9vKpHyFNGF4wCO7MuLTANC1FTLip-j8yYADoXWrD7ZEYp4_OKy68n5FFKd5RS4FQ_JCcgy7LkWs5IexWx8W7w_U2xDj3uasRiGbrQ74oL67sx4qviOk3j4RaLN6vV-vzLqngfGuyKIRSf_Gbs7HDUfMS0DX3CNA2vcjTvfIPpMXnQ2i7hk8N7Sq4vVp-X6_nlh7fvlueXcyuADzm3VMzpSirBWwaYd2mxAteU0joqQSvVgNI1a5lusK5AobCspOCU41pofkpe7323Y73BxmE_RNuZbfQbG3cmWG_-nPT-1tyE76aUnCvFssGLg0EM38ac32x8cth1tscwJgPTEZkSmv4XZaqUuhIKeEaf_4XehTH2-RKZ4sABKEzhz_aUiyGliO0xN6Nmqtvkus2kPtSdFc9-X_fI_-w3Ay_3wKT89ec_7H4A2PG0ow</recordid><startdate>20151103</startdate><enddate>20151103</enddate><creator>Rumkee, Jack C. O</creator><creator>Becher, Matthias A</creator><creator>Thorbek, Pernille</creator><creator>Kennedy, Peter J</creator><creator>Osborne, Juliet L</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7SS</scope><scope>7T2</scope><scope>7U2</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151103</creationdate><title>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</title><author>Rumkee, Jack C. O ; Becher, Matthias A ; Thorbek, Pernille ; Kennedy, Peter J ; Osborne, Juliet L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523t-58671c896753f12e520fe92cd46ac062877d278b1f18deb927e5a1402c7c38583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adults</topic><topic>Animals</topic><topic>Apis mellifera</topic><topic>Bees</topic><topic>Bees - drug effects</topic><topic>Bees - physiology</topic><topic>Failure</topic><topic>honey bee colonies</topic><topic>honey bees</topic><topic>insect larvae</topic><topic>Larva - drug effects</topic><topic>lethal dose 50</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>nectar</topic><topic>oviposition</topic><topic>Pesticides</topic><topic>Pesticides - toxicity</topic><topic>Plant Nectar</topic><topic>Pollen</topic><topic>prediction</topic><topic>Predictions</topic><topic>Simulation</topic><topic>simulation models</topic><topic>Stress, Physiological</topic><topic>Survival Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumkee, Jack C. O</creatorcontrib><creatorcontrib>Becher, Matthias A</creatorcontrib><creatorcontrib>Thorbek, Pernille</creatorcontrib><creatorcontrib>Kennedy, Peter J</creatorcontrib><creatorcontrib>Osborne, Juliet L</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumkee, Jack C. O</au><au>Becher, Matthias A</au><au>Thorbek, Pernille</au><au>Kennedy, Peter J</au><au>Osborne, Juliet L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-11-03</date><risdate>2015</risdate><volume>49</volume><issue>21</issue><spage>12879</spage><epage>12887</epage><pages>12879-12887</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD 50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LIS x ) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26444386</pmid><doi>10.1021/acs.est.5b03593</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2015-11, Vol.49 (21), p.12879-12887 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633771 |
source | MEDLINE; American Chemical Society Journals |
subjects | adults Animals Apis mellifera Bees Bees - drug effects Bees - physiology Failure honey bee colonies honey bees insect larvae Larva - drug effects lethal dose 50 Models, Biological Mortality nectar oviposition Pesticides Pesticides - toxicity Plant Nectar Pollen prediction Predictions Simulation simulation models Stress, Physiological Survival Rate |
title | Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Honeybee%20Colony%20Failure:%20Using%20the%20BEEHAVE%20Model%20to%20Simulate%20Colony%20Responses%20to%20Pesticides&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Rumkee,%20Jack%20C.%20O&rft.date=2015-11-03&rft.volume=49&rft.issue=21&rft.spage=12879&rft.epage=12887&rft.pages=12879-12887&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b03593&rft_dat=%3Cproquest_pubme%3E2000217580%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732322028&rft_id=info:pmid/26444386&rfr_iscdi=true |