Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity
In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-10, Vol.6 (1), p.8491-8491, Article 8491 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8491 |
---|---|
container_issue | 1 |
container_start_page | 8491 |
container_title | Nature communications |
container_volume | 6 |
creator | Yuan, Mingyun Singh, Vibhor Blanter, Yaroslav M. Steele, Gary A. |
description | In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and cavity coherence. Here we introduce an optomechanical architecture consisting of a silicon nitride membrane coupled to a three-dimensional superconducting microwave cavity. Exploiting their large quality factors, we achieve an optomechanical cooperativity of 146,000 and perform sideband cooling of the kilohertz-frequency membrane motion to 34±5 μK, the lowest mechanical mode temperature reported to date. The achieved cooling is limited only by classical noise of the signal generator, and should extend deep into the ground state with superconducting filters. Our results suggest that this realization of optomechanics has the potential to reach the regimes of ultra-large cooperativity and single-photon strong coupling, opening up a new generation of experiments.
Optomechanics is the use of light to control the motion of a mechanical resonator, potentially cooling it to the quantum ground state. Here, the authors cool a millimetre-scale silicon nitride membrane to an effective temperature of 34 microkelvin by coupling it to a three-dimensional microwave cavity. |
doi_str_mv | 10.1038/ncomms9491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721350666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7de6e96368aa73bc99b9cf8c15382be2012c711f063f9aa3b08b8298a6607ff93</originalsourceid><addsrcrecordid>eNplkUtPGzEUha0KVBBk0x9QjcQGtRrqVzzjDRKK-kCKxIZuurHuOHcSw4wd7EkQ_74OoWkAb2zrfDr36B5CPjF6waiov3kb-j5pqdkHcsypZCWruDjYex-RUUp3NB-hWS3lR3LElRzTquLH5M8U4hwLG8ISIwxu7YanAvys6J2N4R67tfMbtXN-Xjy6YVFAMSwiYjlzPfrkgoeuCMsh9GgX4J3NXwsbm1Ny2EKXcPRyn5DfP77fTn6V05uf15OraWml5ENZzVChVkLVAJVorNaNtm1t2VjUvEFOGbcVYy1VotUAoqF1U3Ndg1K0alstTsjl1ne5anqcWfRDhM4so-shPpkAzrxWvFuYeVgbqYSomMgG5y8GMTysMA2md8li14HHsEomL5GJMVVKZfTsDXoXVjGv4Jmicixy6kx92VJ5hSlFbHdhGDWb1sz_1jL8eT_-Dv3XUQa-boGUJT_HuDfzvd1fsrGkLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1720453538</pqid></control><display><type>article</type><title>Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yuan, Mingyun ; Singh, Vibhor ; Blanter, Yaroslav M. ; Steele, Gary A.</creator><creatorcontrib>Yuan, Mingyun ; Singh, Vibhor ; Blanter, Yaroslav M. ; Steele, Gary A.</creatorcontrib><description>In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and cavity coherence. Here we introduce an optomechanical architecture consisting of a silicon nitride membrane coupled to a three-dimensional superconducting microwave cavity. Exploiting their large quality factors, we achieve an optomechanical cooperativity of 146,000 and perform sideband cooling of the kilohertz-frequency membrane motion to 34±5 μK, the lowest mechanical mode temperature reported to date. The achieved cooling is limited only by classical noise of the signal generator, and should extend deep into the ground state with superconducting filters. Our results suggest that this realization of optomechanics has the potential to reach the regimes of ultra-large cooperativity and single-photon strong coupling, opening up a new generation of experiments.
Optomechanics is the use of light to control the motion of a mechanical resonator, potentially cooling it to the quantum ground state. Here, the authors cool a millimetre-scale silicon nitride membrane to an effective temperature of 34 microkelvin by coupling it to a three-dimensional microwave cavity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9491</identifier><identifier>PMID: 26450772</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1130/2800 ; 639/766/25 ; 639/766/400/3925 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-10, Vol.6 (1), p.8491-8491, Article 8491</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7de6e96368aa73bc99b9cf8c15382be2012c711f063f9aa3b08b8298a6607ff93</citedby><cites>FETCH-LOGICAL-c442t-7de6e96368aa73bc99b9cf8c15382be2012c711f063f9aa3b08b8298a6607ff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633713/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633713/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26450772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Mingyun</creatorcontrib><creatorcontrib>Singh, Vibhor</creatorcontrib><creatorcontrib>Blanter, Yaroslav M.</creatorcontrib><creatorcontrib>Steele, Gary A.</creatorcontrib><title>Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and cavity coherence. Here we introduce an optomechanical architecture consisting of a silicon nitride membrane coupled to a three-dimensional superconducting microwave cavity. Exploiting their large quality factors, we achieve an optomechanical cooperativity of 146,000 and perform sideband cooling of the kilohertz-frequency membrane motion to 34±5 μK, the lowest mechanical mode temperature reported to date. The achieved cooling is limited only by classical noise of the signal generator, and should extend deep into the ground state with superconducting filters. Our results suggest that this realization of optomechanics has the potential to reach the regimes of ultra-large cooperativity and single-photon strong coupling, opening up a new generation of experiments.
Optomechanics is the use of light to control the motion of a mechanical resonator, potentially cooling it to the quantum ground state. Here, the authors cool a millimetre-scale silicon nitride membrane to an effective temperature of 34 microkelvin by coupling it to a three-dimensional microwave cavity.</description><subject>639/766/1130/2800</subject><subject>639/766/25</subject><subject>639/766/400/3925</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtPGzEUha0KVBBk0x9QjcQGtRrqVzzjDRKK-kCKxIZuurHuOHcSw4wd7EkQ_74OoWkAb2zrfDr36B5CPjF6waiov3kb-j5pqdkHcsypZCWruDjYex-RUUp3NB-hWS3lR3LElRzTquLH5M8U4hwLG8ISIwxu7YanAvys6J2N4R67tfMbtXN-Xjy6YVFAMSwiYjlzPfrkgoeuCMsh9GgX4J3NXwsbm1Ny2EKXcPRyn5DfP77fTn6V05uf15OraWml5ENZzVChVkLVAJVorNaNtm1t2VjUvEFOGbcVYy1VotUAoqF1U3Ndg1K0alstTsjl1ne5anqcWfRDhM4so-shPpkAzrxWvFuYeVgbqYSomMgG5y8GMTysMA2md8li14HHsEomL5GJMVVKZfTsDXoXVjGv4Jmicixy6kx92VJ5hSlFbHdhGDWb1sz_1jL8eT_-Dv3XUQa-boGUJT_HuDfzvd1fsrGkLQ</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Yuan, Mingyun</creator><creator>Singh, Vibhor</creator><creator>Blanter, Yaroslav M.</creator><creator>Steele, Gary A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151009</creationdate><title>Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity</title><author>Yuan, Mingyun ; Singh, Vibhor ; Blanter, Yaroslav M. ; Steele, Gary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7de6e96368aa73bc99b9cf8c15382be2012c711f063f9aa3b08b8298a6607ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/1130/2800</topic><topic>639/766/25</topic><topic>639/766/400/3925</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Mingyun</creatorcontrib><creatorcontrib>Singh, Vibhor</creatorcontrib><creatorcontrib>Blanter, Yaroslav M.</creatorcontrib><creatorcontrib>Steele, Gary A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Mingyun</au><au>Singh, Vibhor</au><au>Blanter, Yaroslav M.</au><au>Steele, Gary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8491</spage><epage>8491</epage><pages>8491-8491</pages><artnum>8491</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>In cavity optomechanics, light is used to control mechanical motion. A central goal of the field is achieving single-photon strong coupling, which would enable the creation of quantum superposition states of motion. Reaching this limit requires significant improvements in optomechanical coupling and cavity coherence. Here we introduce an optomechanical architecture consisting of a silicon nitride membrane coupled to a three-dimensional superconducting microwave cavity. Exploiting their large quality factors, we achieve an optomechanical cooperativity of 146,000 and perform sideband cooling of the kilohertz-frequency membrane motion to 34±5 μK, the lowest mechanical mode temperature reported to date. The achieved cooling is limited only by classical noise of the signal generator, and should extend deep into the ground state with superconducting filters. Our results suggest that this realization of optomechanics has the potential to reach the regimes of ultra-large cooperativity and single-photon strong coupling, opening up a new generation of experiments.
Optomechanics is the use of light to control the motion of a mechanical resonator, potentially cooling it to the quantum ground state. Here, the authors cool a millimetre-scale silicon nitride membrane to an effective temperature of 34 microkelvin by coupling it to a three-dimensional microwave cavity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26450772</pmid><doi>10.1038/ncomms9491</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2015-10, Vol.6 (1), p.8491-8491, Article 8491 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4633713 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 639/766/1130/2800 639/766/25 639/766/400/3925 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20cooperativity%20and%20microkelvin%20cooling%20with%20a%20three-dimensional%20optomechanical%20cavity&rft.jtitle=Nature%20communications&rft.au=Yuan,%20Mingyun&rft.date=2015-10-09&rft.volume=6&rft.issue=1&rft.spage=8491&rft.epage=8491&rft.pages=8491-8491&rft.artnum=8491&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9491&rft_dat=%3Cproquest_pubme%3E1721350666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1720453538&rft_id=info:pmid/26450772&rfr_iscdi=true |