All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells

Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2015-11, Vol.25 (21), p.2763-2773
Hauptverfasser: Reifler, Aaron N., Chervenak, Andrew P., Dolikian, Michael E., Benenati, Brian A., Li, Benjamin Y., Wachter, Rebecca D., Lynch, Andrew M., Demertzis, Zachary D., Meyers, Benjamin S., Abufarha, Fady S., Jaeckel, Elizabeth R., Flannery, Michael P., Wong, Kwoon Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2773
container_issue 21
container_start_page 2763
container_title Current biology
container_volume 25
creator Reifler, Aaron N.
Chervenak, Andrew P.
Dolikian, Michael E.
Benenati, Brian A.
Li, Benjamin Y.
Wachter, Rebecca D.
Lynch, Andrew M.
Demertzis, Zachary D.
Meyers, Benjamin S.
Abufarha, Fady S.
Jaeckel, Elizabeth R.
Flannery, Michael P.
Wong, Kwoon Y.
description Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain. •The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.
doi_str_mv 10.1016/j.cub.2015.09.018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4631663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982215010970</els_id><sourcerecordid>1730683760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRuOPqD_BiOHqwW2gYGmJiMhl1XbO6iatnAnT1yEjTLXRP4r-XcdaNXjyRot57BfUh9JSSmhIqXu5rt9i6IXRdE1UTKu-hFZWtqgjn6_toRZQglZJNc4Ye5bwnhDZSiYforBGcU8bVCoVNCPhm8t993L3AN0uejY_Q4etP-I3PUzCuFJvBuFSu8RZCyPgzOPAHwBdmqj4s0c1-jPgyTsuM-zQO-CMEE8cp-1gkcReO7d_Ox-hBb0KGJ7fnOfr67u2X7fvq6vricru5qtxatnPlRCcFA6GEa4lqG8PXwlrGuQPa9M7avhFADeMCrOqosxRaYamTgkvuOmDn6PUpd1rsAJ2DOCcT9JT8YNJPPRqv_-1E_03vxoPmglEhWAl4fhuQxh8L5FkPPrvyBRNhXLKmLSNCslaQIqUnqUtjzgn6uzGU6CMlvdeFkj5S0kTpQql4nv39vjvHHyxF8OokgLKlg4eks_MQCwufwM26G_1_4n8BzhWkew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730683760</pqid></control><display><type>article</type><title>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reifler, Aaron N. ; Chervenak, Andrew P. ; Dolikian, Michael E. ; Benenati, Brian A. ; Li, Benjamin Y. ; Wachter, Rebecca D. ; Lynch, Andrew M. ; Demertzis, Zachary D. ; Meyers, Benjamin S. ; Abufarha, Fady S. ; Jaeckel, Elizabeth R. ; Flannery, Michael P. ; Wong, Kwoon Y.</creator><creatorcontrib>Reifler, Aaron N. ; Chervenak, Andrew P. ; Dolikian, Michael E. ; Benenati, Brian A. ; Li, Benjamin Y. ; Wachter, Rebecca D. ; Lynch, Andrew M. ; Demertzis, Zachary D. ; Meyers, Benjamin S. ; Abufarha, Fady S. ; Jaeckel, Elizabeth R. ; Flannery, Michael P. ; Wong, Kwoon Y.</creatorcontrib><description>Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain. •The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2015.09.018</identifier><identifier>PMID: 26441349</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amacrine Cells - metabolism ; Animals ; Axons - metabolism ; Dendrites - metabolism ; Gap Junctions - metabolism ; Interneurons - metabolism ; Light Signal Transduction ; Photic Stimulation ; Photoreceptor Cells, Vertebrate - metabolism ; Rats ; Rats, Sprague-Dawley ; Retina - metabolism ; Retinal Ganglion Cells - metabolism ; Rod Opsins - metabolism ; Visual Pathways</subject><ispartof>Current biology, 2015-11, Vol.25 (21), p.2763-2773</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</citedby><cites>FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982215010970$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26441349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reifler, Aaron N.</creatorcontrib><creatorcontrib>Chervenak, Andrew P.</creatorcontrib><creatorcontrib>Dolikian, Michael E.</creatorcontrib><creatorcontrib>Benenati, Brian A.</creatorcontrib><creatorcontrib>Li, Benjamin Y.</creatorcontrib><creatorcontrib>Wachter, Rebecca D.</creatorcontrib><creatorcontrib>Lynch, Andrew M.</creatorcontrib><creatorcontrib>Demertzis, Zachary D.</creatorcontrib><creatorcontrib>Meyers, Benjamin S.</creatorcontrib><creatorcontrib>Abufarha, Fady S.</creatorcontrib><creatorcontrib>Jaeckel, Elizabeth R.</creatorcontrib><creatorcontrib>Flannery, Michael P.</creatorcontrib><creatorcontrib>Wong, Kwoon Y.</creatorcontrib><title>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain. •The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.</description><subject>Amacrine Cells - metabolism</subject><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Dendrites - metabolism</subject><subject>Gap Junctions - metabolism</subject><subject>Interneurons - metabolism</subject><subject>Light Signal Transduction</subject><subject>Photic Stimulation</subject><subject>Photoreceptor Cells, Vertebrate - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Retina - metabolism</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Rod Opsins - metabolism</subject><subject>Visual Pathways</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGPFCEQhYnRuOPqD_BiOHqwW2gYGmJiMhl1XbO6iatnAnT1yEjTLXRP4r-XcdaNXjyRot57BfUh9JSSmhIqXu5rt9i6IXRdE1UTKu-hFZWtqgjn6_toRZQglZJNc4Ye5bwnhDZSiYforBGcU8bVCoVNCPhm8t993L3AN0uejY_Q4etP-I3PUzCuFJvBuFSu8RZCyPgzOPAHwBdmqj4s0c1-jPgyTsuM-zQO-CMEE8cp-1gkcReO7d_Ox-hBb0KGJ7fnOfr67u2X7fvq6vricru5qtxatnPlRCcFA6GEa4lqG8PXwlrGuQPa9M7avhFADeMCrOqosxRaYamTgkvuOmDn6PUpd1rsAJ2DOCcT9JT8YNJPPRqv_-1E_03vxoPmglEhWAl4fhuQxh8L5FkPPrvyBRNhXLKmLSNCslaQIqUnqUtjzgn6uzGU6CMlvdeFkj5S0kTpQql4nv39vjvHHyxF8OokgLKlg4eks_MQCwufwM26G_1_4n8BzhWkew</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Reifler, Aaron N.</creator><creator>Chervenak, Andrew P.</creator><creator>Dolikian, Michael E.</creator><creator>Benenati, Brian A.</creator><creator>Li, Benjamin Y.</creator><creator>Wachter, Rebecca D.</creator><creator>Lynch, Andrew M.</creator><creator>Demertzis, Zachary D.</creator><creator>Meyers, Benjamin S.</creator><creator>Abufarha, Fady S.</creator><creator>Jaeckel, Elizabeth R.</creator><creator>Flannery, Michael P.</creator><creator>Wong, Kwoon Y.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151102</creationdate><title>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</title><author>Reifler, Aaron N. ; Chervenak, Andrew P. ; Dolikian, Michael E. ; Benenati, Brian A. ; Li, Benjamin Y. ; Wachter, Rebecca D. ; Lynch, Andrew M. ; Demertzis, Zachary D. ; Meyers, Benjamin S. ; Abufarha, Fady S. ; Jaeckel, Elizabeth R. ; Flannery, Michael P. ; Wong, Kwoon Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amacrine Cells - metabolism</topic><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Dendrites - metabolism</topic><topic>Gap Junctions - metabolism</topic><topic>Interneurons - metabolism</topic><topic>Light Signal Transduction</topic><topic>Photic Stimulation</topic><topic>Photoreceptor Cells, Vertebrate - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Retina - metabolism</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Rod Opsins - metabolism</topic><topic>Visual Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reifler, Aaron N.</creatorcontrib><creatorcontrib>Chervenak, Andrew P.</creatorcontrib><creatorcontrib>Dolikian, Michael E.</creatorcontrib><creatorcontrib>Benenati, Brian A.</creatorcontrib><creatorcontrib>Li, Benjamin Y.</creatorcontrib><creatorcontrib>Wachter, Rebecca D.</creatorcontrib><creatorcontrib>Lynch, Andrew M.</creatorcontrib><creatorcontrib>Demertzis, Zachary D.</creatorcontrib><creatorcontrib>Meyers, Benjamin S.</creatorcontrib><creatorcontrib>Abufarha, Fady S.</creatorcontrib><creatorcontrib>Jaeckel, Elizabeth R.</creatorcontrib><creatorcontrib>Flannery, Michael P.</creatorcontrib><creatorcontrib>Wong, Kwoon Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reifler, Aaron N.</au><au>Chervenak, Andrew P.</au><au>Dolikian, Michael E.</au><au>Benenati, Brian A.</au><au>Li, Benjamin Y.</au><au>Wachter, Rebecca D.</au><au>Lynch, Andrew M.</au><au>Demertzis, Zachary D.</au><au>Meyers, Benjamin S.</au><au>Abufarha, Fady S.</au><au>Jaeckel, Elizabeth R.</au><au>Flannery, Michael P.</au><au>Wong, Kwoon Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2015-11-02</date><risdate>2015</risdate><volume>25</volume><issue>21</issue><spage>2763</spage><epage>2773</epage><pages>2763-2773</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain. •The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26441349</pmid><doi>10.1016/j.cub.2015.09.018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2015-11, Vol.25 (21), p.2763-2773
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4631663
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Amacrine Cells - metabolism
Animals
Axons - metabolism
Dendrites - metabolism
Gap Junctions - metabolism
Interneurons - metabolism
Light Signal Transduction
Photic Stimulation
Photoreceptor Cells, Vertebrate - metabolism
Rats
Rats, Sprague-Dawley
Retina - metabolism
Retinal Ganglion Cells - metabolism
Rod Opsins - metabolism
Visual Pathways
title All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Spiking,%20Sustained%20ON%20Displaced%20Amacrine%20Cells%20Receive%20Gap-Junction%20Input%20from%20Melanopsin%20Ganglion%20Cells&rft.jtitle=Current%20biology&rft.au=Reifler,%20Aaron%20N.&rft.date=2015-11-02&rft.volume=25&rft.issue=21&rft.spage=2763&rft.epage=2773&rft.pages=2763-2773&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2015.09.018&rft_dat=%3Cproquest_pubme%3E1730683760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730683760&rft_id=info:pmid/26441349&rft_els_id=S0960982215010970&rfr_iscdi=true