All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells
Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We...
Gespeichert in:
Veröffentlicht in: | Current biology 2015-11, Vol.25 (21), p.2763-2773 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2773 |
---|---|
container_issue | 21 |
container_start_page | 2763 |
container_title | Current biology |
container_volume | 25 |
creator | Reifler, Aaron N. Chervenak, Andrew P. Dolikian, Michael E. Benenati, Brian A. Li, Benjamin Y. Wachter, Rebecca D. Lynch, Andrew M. Demertzis, Zachary D. Meyers, Benjamin S. Abufarha, Fady S. Jaeckel, Elizabeth R. Flannery, Michael P. Wong, Kwoon Y. |
description | Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
•The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity
For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively. |
doi_str_mv | 10.1016/j.cub.2015.09.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4631663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982215010970</els_id><sourcerecordid>1730683760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRuOPqD_BiOHqwW2gYGmJiMhl1XbO6iatnAnT1yEjTLXRP4r-XcdaNXjyRot57BfUh9JSSmhIqXu5rt9i6IXRdE1UTKu-hFZWtqgjn6_toRZQglZJNc4Ye5bwnhDZSiYforBGcU8bVCoVNCPhm8t993L3AN0uejY_Q4etP-I3PUzCuFJvBuFSu8RZCyPgzOPAHwBdmqj4s0c1-jPgyTsuM-zQO-CMEE8cp-1gkcReO7d_Ox-hBb0KGJ7fnOfr67u2X7fvq6vricru5qtxatnPlRCcFA6GEa4lqG8PXwlrGuQPa9M7avhFADeMCrOqosxRaYamTgkvuOmDn6PUpd1rsAJ2DOCcT9JT8YNJPPRqv_-1E_03vxoPmglEhWAl4fhuQxh8L5FkPPrvyBRNhXLKmLSNCslaQIqUnqUtjzgn6uzGU6CMlvdeFkj5S0kTpQql4nv39vjvHHyxF8OokgLKlg4eks_MQCwufwM26G_1_4n8BzhWkew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730683760</pqid></control><display><type>article</type><title>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reifler, Aaron N. ; Chervenak, Andrew P. ; Dolikian, Michael E. ; Benenati, Brian A. ; Li, Benjamin Y. ; Wachter, Rebecca D. ; Lynch, Andrew M. ; Demertzis, Zachary D. ; Meyers, Benjamin S. ; Abufarha, Fady S. ; Jaeckel, Elizabeth R. ; Flannery, Michael P. ; Wong, Kwoon Y.</creator><creatorcontrib>Reifler, Aaron N. ; Chervenak, Andrew P. ; Dolikian, Michael E. ; Benenati, Brian A. ; Li, Benjamin Y. ; Wachter, Rebecca D. ; Lynch, Andrew M. ; Demertzis, Zachary D. ; Meyers, Benjamin S. ; Abufarha, Fady S. ; Jaeckel, Elizabeth R. ; Flannery, Michael P. ; Wong, Kwoon Y.</creatorcontrib><description>Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
•The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity
For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2015.09.018</identifier><identifier>PMID: 26441349</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amacrine Cells - metabolism ; Animals ; Axons - metabolism ; Dendrites - metabolism ; Gap Junctions - metabolism ; Interneurons - metabolism ; Light Signal Transduction ; Photic Stimulation ; Photoreceptor Cells, Vertebrate - metabolism ; Rats ; Rats, Sprague-Dawley ; Retina - metabolism ; Retinal Ganglion Cells - metabolism ; Rod Opsins - metabolism ; Visual Pathways</subject><ispartof>Current biology, 2015-11, Vol.25 (21), p.2763-2773</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</citedby><cites>FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982215010970$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26441349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reifler, Aaron N.</creatorcontrib><creatorcontrib>Chervenak, Andrew P.</creatorcontrib><creatorcontrib>Dolikian, Michael E.</creatorcontrib><creatorcontrib>Benenati, Brian A.</creatorcontrib><creatorcontrib>Li, Benjamin Y.</creatorcontrib><creatorcontrib>Wachter, Rebecca D.</creatorcontrib><creatorcontrib>Lynch, Andrew M.</creatorcontrib><creatorcontrib>Demertzis, Zachary D.</creatorcontrib><creatorcontrib>Meyers, Benjamin S.</creatorcontrib><creatorcontrib>Abufarha, Fady S.</creatorcontrib><creatorcontrib>Jaeckel, Elizabeth R.</creatorcontrib><creatorcontrib>Flannery, Michael P.</creatorcontrib><creatorcontrib>Wong, Kwoon Y.</creatorcontrib><title>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
•The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity
For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.</description><subject>Amacrine Cells - metabolism</subject><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Dendrites - metabolism</subject><subject>Gap Junctions - metabolism</subject><subject>Interneurons - metabolism</subject><subject>Light Signal Transduction</subject><subject>Photic Stimulation</subject><subject>Photoreceptor Cells, Vertebrate - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Retina - metabolism</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Rod Opsins - metabolism</subject><subject>Visual Pathways</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGPFCEQhYnRuOPqD_BiOHqwW2gYGmJiMhl1XbO6iatnAnT1yEjTLXRP4r-XcdaNXjyRot57BfUh9JSSmhIqXu5rt9i6IXRdE1UTKu-hFZWtqgjn6_toRZQglZJNc4Ye5bwnhDZSiYforBGcU8bVCoVNCPhm8t993L3AN0uejY_Q4etP-I3PUzCuFJvBuFSu8RZCyPgzOPAHwBdmqj4s0c1-jPgyTsuM-zQO-CMEE8cp-1gkcReO7d_Ox-hBb0KGJ7fnOfr67u2X7fvq6vricru5qtxatnPlRCcFA6GEa4lqG8PXwlrGuQPa9M7avhFADeMCrOqosxRaYamTgkvuOmDn6PUpd1rsAJ2DOCcT9JT8YNJPPRqv_-1E_03vxoPmglEhWAl4fhuQxh8L5FkPPrvyBRNhXLKmLSNCslaQIqUnqUtjzgn6uzGU6CMlvdeFkj5S0kTpQql4nv39vjvHHyxF8OokgLKlg4eks_MQCwufwM26G_1_4n8BzhWkew</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Reifler, Aaron N.</creator><creator>Chervenak, Andrew P.</creator><creator>Dolikian, Michael E.</creator><creator>Benenati, Brian A.</creator><creator>Li, Benjamin Y.</creator><creator>Wachter, Rebecca D.</creator><creator>Lynch, Andrew M.</creator><creator>Demertzis, Zachary D.</creator><creator>Meyers, Benjamin S.</creator><creator>Abufarha, Fady S.</creator><creator>Jaeckel, Elizabeth R.</creator><creator>Flannery, Michael P.</creator><creator>Wong, Kwoon Y.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151102</creationdate><title>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</title><author>Reifler, Aaron N. ; Chervenak, Andrew P. ; Dolikian, Michael E. ; Benenati, Brian A. ; Li, Benjamin Y. ; Wachter, Rebecca D. ; Lynch, Andrew M. ; Demertzis, Zachary D. ; Meyers, Benjamin S. ; Abufarha, Fady S. ; Jaeckel, Elizabeth R. ; Flannery, Michael P. ; Wong, Kwoon Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-c6d863e696c70972a456bb344ce12fcbbf26e1a346eb9d1cb1e76b1c86484cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amacrine Cells - metabolism</topic><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Dendrites - metabolism</topic><topic>Gap Junctions - metabolism</topic><topic>Interneurons - metabolism</topic><topic>Light Signal Transduction</topic><topic>Photic Stimulation</topic><topic>Photoreceptor Cells, Vertebrate - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Retina - metabolism</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Rod Opsins - metabolism</topic><topic>Visual Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reifler, Aaron N.</creatorcontrib><creatorcontrib>Chervenak, Andrew P.</creatorcontrib><creatorcontrib>Dolikian, Michael E.</creatorcontrib><creatorcontrib>Benenati, Brian A.</creatorcontrib><creatorcontrib>Li, Benjamin Y.</creatorcontrib><creatorcontrib>Wachter, Rebecca D.</creatorcontrib><creatorcontrib>Lynch, Andrew M.</creatorcontrib><creatorcontrib>Demertzis, Zachary D.</creatorcontrib><creatorcontrib>Meyers, Benjamin S.</creatorcontrib><creatorcontrib>Abufarha, Fady S.</creatorcontrib><creatorcontrib>Jaeckel, Elizabeth R.</creatorcontrib><creatorcontrib>Flannery, Michael P.</creatorcontrib><creatorcontrib>Wong, Kwoon Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reifler, Aaron N.</au><au>Chervenak, Andrew P.</au><au>Dolikian, Michael E.</au><au>Benenati, Brian A.</au><au>Li, Benjamin Y.</au><au>Wachter, Rebecca D.</au><au>Lynch, Andrew M.</au><au>Demertzis, Zachary D.</au><au>Meyers, Benjamin S.</au><au>Abufarha, Fady S.</au><au>Jaeckel, Elizabeth R.</au><au>Flannery, Michael P.</au><au>Wong, Kwoon Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2015-11-02</date><risdate>2015</risdate><volume>25</volume><issue>21</issue><spage>2763</spage><epage>2773</epage><pages>2763-2773</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
•The synaptic mechanisms of sustained ON amacrine cells in rat retinas were studied•All spiking, sustained ON displaced amacrines get ipRGC input through gap junctions•These ipRGC-driven interneurons comprise three morphological classes•The three cell classes respond to light differently, implying functional diversity
For many decades, retinal ganglion cells were thought to signal information only to higher visual centers of the brain. In this study, Reifler et al. report that intrinsically photosensitive retinal ganglion cells transmit their tonic light responses to multiple types of amacrine interneurons in the rat retina, through gap junctions exclusively.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26441349</pmid><doi>10.1016/j.cub.2015.09.018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2015-11, Vol.25 (21), p.2763-2773 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4631663 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Amacrine Cells - metabolism Animals Axons - metabolism Dendrites - metabolism Gap Junctions - metabolism Interneurons - metabolism Light Signal Transduction Photic Stimulation Photoreceptor Cells, Vertebrate - metabolism Rats Rats, Sprague-Dawley Retina - metabolism Retinal Ganglion Cells - metabolism Rod Opsins - metabolism Visual Pathways |
title | All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Spiking,%20Sustained%20ON%20Displaced%20Amacrine%20Cells%20Receive%20Gap-Junction%20Input%20from%20Melanopsin%20Ganglion%20Cells&rft.jtitle=Current%20biology&rft.au=Reifler,%20Aaron%20N.&rft.date=2015-11-02&rft.volume=25&rft.issue=21&rft.spage=2763&rft.epage=2773&rft.pages=2763-2773&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2015.09.018&rft_dat=%3Cproquest_pubme%3E1730683760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730683760&rft_id=info:pmid/26441349&rft_els_id=S0960982215010970&rfr_iscdi=true |