How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study

Patients often wait to have urgent or emergency surgery. The number of operating rooms (ORs) needed to minimize waiting time while optimizing resources can be determined using queuing theory and computer simulation. We developed a computer program using Monte Carlo simulation to determine the number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC health services research 2015-10, Vol.15 (1), p.487-487, Article 487
Hauptverfasser: Antognini, Joseph M O'Brien, Antognini, Joseph F, Khatri, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 1
container_start_page 487
container_title BMC health services research
container_volume 15
creator Antognini, Joseph M O'Brien
Antognini, Joseph F
Khatri, Vijay
description Patients often wait to have urgent or emergency surgery. The number of operating rooms (ORs) needed to minimize waiting time while optimizing resources can be determined using queuing theory and computer simulation. We developed a computer program using Monte Carlo simulation to determine the number of ORs needed to minimize patient wait times while optimizing resources. We used patient arrival data and surgical procedure length from our institution, a tertiary-care academic medical center that serves a large diverse population. With ~4800 patients/year requiring non-elective surgery, and mean procedure length 185 min (median 150 min) we determined the number of ORs needed during the day and evening (0600-2200) and during the night (2200-0600) that resulted in acceptable wait times. Simulation of 4 ORs at day/evening and 3 ORs at night resulted in median wait time = 0 min (mean = 19 min) for emergency cases requiring surgery within 2 h, with wait time at the 95th percentile = 109 min. Median wait time for urgent cases needing surgery within 8-12 h was 34 min (mean = 136 min), with wait time at the 95th percentile = 474 min. The effect of changes in surgical length and volume on wait times was determined with sensitivity analysis. Monte Carlo simulation can guide decisions on how to balance resources for elective and non-elective surgical procedures.
doi_str_mv 10.1186/s12913-015-1148-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4624654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541448074</galeid><sourcerecordid>A541448074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-72a599c78028d84d680c9032ba6cecb3c4c70145dd2e84b133416b7f8913c8433</originalsourceid><addsrcrecordid>eNptkk9rFTEUxQdRbK1-ADcScONmav4ns1Eej2qFlm50HTKZO2PKTPJMZmrft2-GV2srEkjCze-cyw2nqt4SfEqIlh8zoQ1hNSaiJoTr-vZZdUy4orVsJHv-6H5Uvcr5GmOiNFUvqyMqBVZlO678efyNJhv2KO4g2dmHAaUYp4xsAhQAOujQHFfEDqUQQw0juNnfAMpLGryzI3I2Q_6MNugyhhnQ1qYxouynZSyGMaA8L93-dfWit2OGN_fnSfXjy9n37Xl9cfX123ZzUTve8LlW1IqmcUpjqjvNO6mxazCjrZUOXMscdwoTLrqOguYtYYwT2apel59wmjN2Un06-O6WdoLOQZiTHc0u-cmmvYnWm6cvwf80Q7wxXFIuBS8GH-4NUvy1QJ7N5LODcbQB4pINUVRToThRBX3_D3odlxTKeIVSjdRCyOYvNdgRjA99LH3damo2ghPONVZr29P_UGV1MHkXA_S-1J8IyEHgUsw5Qf8wI8FmzYc55MOUfJg1H-a2aN49_pwHxZ9AsDuU47VS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779685569</pqid></control><display><type>article</type><title>How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Antognini, Joseph M O'Brien ; Antognini, Joseph F ; Khatri, Vijay</creator><creatorcontrib>Antognini, Joseph M O'Brien ; Antognini, Joseph F ; Khatri, Vijay</creatorcontrib><description>Patients often wait to have urgent or emergency surgery. The number of operating rooms (ORs) needed to minimize waiting time while optimizing resources can be determined using queuing theory and computer simulation. We developed a computer program using Monte Carlo simulation to determine the number of ORs needed to minimize patient wait times while optimizing resources. We used patient arrival data and surgical procedure length from our institution, a tertiary-care academic medical center that serves a large diverse population. With ~4800 patients/year requiring non-elective surgery, and mean procedure length 185 min (median 150 min) we determined the number of ORs needed during the day and evening (0600-2200) and during the night (2200-0600) that resulted in acceptable wait times. Simulation of 4 ORs at day/evening and 3 ORs at night resulted in median wait time = 0 min (mean = 19 min) for emergency cases requiring surgery within 2 h, with wait time at the 95th percentile = 109 min. Median wait time for urgent cases needing surgery within 8-12 h was 34 min (mean = 136 min), with wait time at the 95th percentile = 474 min. The effect of changes in surgical length and volume on wait times was determined with sensitivity analysis. Monte Carlo simulation can guide decisions on how to balance resources for elective and non-elective surgical procedures.</description><identifier>ISSN: 1472-6963</identifier><identifier>EISSN: 1472-6963</identifier><identifier>DOI: 10.1186/s12913-015-1148-x</identifier><identifier>PMID: 26507265</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Aged ; Analysis ; Anesthesiology ; Computer Simulation ; Computer-generated environments ; Efficiency ; Emergency Treatment - statistics &amp; numerical data ; Hospital costs ; Humans ; Medical centers ; Monte Carlo Method ; Monte Carlo simulation ; Operating Rooms - statistics &amp; numerical data ; Operations management ; Operative Time ; Queuing theory ; Surgery ; Surgical Procedures, Operative - statistics &amp; numerical data ; Time-to-Treatment - statistics &amp; numerical data ; Waiting Lists</subject><ispartof>BMC health services research, 2015-10, Vol.15 (1), p.487-487, Article 487</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2015</rights><rights>Antognini et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-72a599c78028d84d680c9032ba6cecb3c4c70145dd2e84b133416b7f8913c8433</citedby><cites>FETCH-LOGICAL-c494t-72a599c78028d84d680c9032ba6cecb3c4c70145dd2e84b133416b7f8913c8433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624654/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624654/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26507265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antognini, Joseph M O'Brien</creatorcontrib><creatorcontrib>Antognini, Joseph F</creatorcontrib><creatorcontrib>Khatri, Vijay</creatorcontrib><title>How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study</title><title>BMC health services research</title><addtitle>BMC Health Serv Res</addtitle><description>Patients often wait to have urgent or emergency surgery. The number of operating rooms (ORs) needed to minimize waiting time while optimizing resources can be determined using queuing theory and computer simulation. We developed a computer program using Monte Carlo simulation to determine the number of ORs needed to minimize patient wait times while optimizing resources. We used patient arrival data and surgical procedure length from our institution, a tertiary-care academic medical center that serves a large diverse population. With ~4800 patients/year requiring non-elective surgery, and mean procedure length 185 min (median 150 min) we determined the number of ORs needed during the day and evening (0600-2200) and during the night (2200-0600) that resulted in acceptable wait times. Simulation of 4 ORs at day/evening and 3 ORs at night resulted in median wait time = 0 min (mean = 19 min) for emergency cases requiring surgery within 2 h, with wait time at the 95th percentile = 109 min. Median wait time for urgent cases needing surgery within 8-12 h was 34 min (mean = 136 min), with wait time at the 95th percentile = 474 min. The effect of changes in surgical length and volume on wait times was determined with sensitivity analysis. Monte Carlo simulation can guide decisions on how to balance resources for elective and non-elective surgical procedures.</description><subject>Aged</subject><subject>Analysis</subject><subject>Anesthesiology</subject><subject>Computer Simulation</subject><subject>Computer-generated environments</subject><subject>Efficiency</subject><subject>Emergency Treatment - statistics &amp; numerical data</subject><subject>Hospital costs</subject><subject>Humans</subject><subject>Medical centers</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Operating Rooms - statistics &amp; numerical data</subject><subject>Operations management</subject><subject>Operative Time</subject><subject>Queuing theory</subject><subject>Surgery</subject><subject>Surgical Procedures, Operative - statistics &amp; numerical data</subject><subject>Time-to-Treatment - statistics &amp; numerical data</subject><subject>Waiting Lists</subject><issn>1472-6963</issn><issn>1472-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkk9rFTEUxQdRbK1-ADcScONmav4ns1Eej2qFlm50HTKZO2PKTPJMZmrft2-GV2srEkjCze-cyw2nqt4SfEqIlh8zoQ1hNSaiJoTr-vZZdUy4orVsJHv-6H5Uvcr5GmOiNFUvqyMqBVZlO678efyNJhv2KO4g2dmHAaUYp4xsAhQAOujQHFfEDqUQQw0juNnfAMpLGryzI3I2Q_6MNugyhhnQ1qYxouynZSyGMaA8L93-dfWit2OGN_fnSfXjy9n37Xl9cfX123ZzUTve8LlW1IqmcUpjqjvNO6mxazCjrZUOXMscdwoTLrqOguYtYYwT2apel59wmjN2Un06-O6WdoLOQZiTHc0u-cmmvYnWm6cvwf80Q7wxXFIuBS8GH-4NUvy1QJ7N5LODcbQB4pINUVRToThRBX3_D3odlxTKeIVSjdRCyOYvNdgRjA99LH3damo2ghPONVZr29P_UGV1MHkXA_S-1J8IyEHgUsw5Qf8wI8FmzYc55MOUfJg1H-a2aN49_pwHxZ9AsDuU47VS</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Antognini, Joseph M O'Brien</creator><creator>Antognini, Joseph F</creator><creator>Khatri, Vijay</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151028</creationdate><title>How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study</title><author>Antognini, Joseph M O'Brien ; Antognini, Joseph F ; Khatri, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-72a599c78028d84d680c9032ba6cecb3c4c70145dd2e84b133416b7f8913c8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aged</topic><topic>Analysis</topic><topic>Anesthesiology</topic><topic>Computer Simulation</topic><topic>Computer-generated environments</topic><topic>Efficiency</topic><topic>Emergency Treatment - statistics &amp; numerical data</topic><topic>Hospital costs</topic><topic>Humans</topic><topic>Medical centers</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Operating Rooms - statistics &amp; numerical data</topic><topic>Operations management</topic><topic>Operative Time</topic><topic>Queuing theory</topic><topic>Surgery</topic><topic>Surgical Procedures, Operative - statistics &amp; numerical data</topic><topic>Time-to-Treatment - statistics &amp; numerical data</topic><topic>Waiting Lists</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antognini, Joseph M O'Brien</creatorcontrib><creatorcontrib>Antognini, Joseph F</creatorcontrib><creatorcontrib>Khatri, Vijay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC health services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antognini, Joseph M O'Brien</au><au>Antognini, Joseph F</au><au>Khatri, Vijay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study</atitle><jtitle>BMC health services research</jtitle><addtitle>BMC Health Serv Res</addtitle><date>2015-10-28</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>487</spage><epage>487</epage><pages>487-487</pages><artnum>487</artnum><issn>1472-6963</issn><eissn>1472-6963</eissn><abstract>Patients often wait to have urgent or emergency surgery. The number of operating rooms (ORs) needed to minimize waiting time while optimizing resources can be determined using queuing theory and computer simulation. We developed a computer program using Monte Carlo simulation to determine the number of ORs needed to minimize patient wait times while optimizing resources. We used patient arrival data and surgical procedure length from our institution, a tertiary-care academic medical center that serves a large diverse population. With ~4800 patients/year requiring non-elective surgery, and mean procedure length 185 min (median 150 min) we determined the number of ORs needed during the day and evening (0600-2200) and during the night (2200-0600) that resulted in acceptable wait times. Simulation of 4 ORs at day/evening and 3 ORs at night resulted in median wait time = 0 min (mean = 19 min) for emergency cases requiring surgery within 2 h, with wait time at the 95th percentile = 109 min. Median wait time for urgent cases needing surgery within 8-12 h was 34 min (mean = 136 min), with wait time at the 95th percentile = 474 min. The effect of changes in surgical length and volume on wait times was determined with sensitivity analysis. Monte Carlo simulation can guide decisions on how to balance resources for elective and non-elective surgical procedures.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26507265</pmid><doi>10.1186/s12913-015-1148-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1472-6963
ispartof BMC health services research, 2015-10, Vol.15 (1), p.487-487, Article 487
issn 1472-6963
1472-6963
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4624654
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Aged
Analysis
Anesthesiology
Computer Simulation
Computer-generated environments
Efficiency
Emergency Treatment - statistics & numerical data
Hospital costs
Humans
Medical centers
Monte Carlo Method
Monte Carlo simulation
Operating Rooms - statistics & numerical data
Operations management
Operative Time
Queuing theory
Surgery
Surgical Procedures, Operative - statistics & numerical data
Time-to-Treatment - statistics & numerical data
Waiting Lists
title How many operating rooms are needed to manage non-elective surgical cases? A Monte Carlo simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20many%20operating%20rooms%20are%20needed%20to%20manage%20non-elective%20surgical%20cases?%20A%20Monte%20Carlo%20simulation%20study&rft.jtitle=BMC%20health%20services%20research&rft.au=Antognini,%20Joseph%20M%20O'Brien&rft.date=2015-10-28&rft.volume=15&rft.issue=1&rft.spage=487&rft.epage=487&rft.pages=487-487&rft.artnum=487&rft.issn=1472-6963&rft.eissn=1472-6963&rft_id=info:doi/10.1186/s12913-015-1148-x&rft_dat=%3Cgale_pubme%3EA541448074%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779685569&rft_id=info:pmid/26507265&rft_galeid=A541448074&rfr_iscdi=true