Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor

Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2015-11, Vol.24 (11), p.1764-1776
Hauptverfasser: Bartelli, Nicholas L., Hazelbauer, Gerald L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1776
container_issue 11
container_start_page 1764
container_title Protein science
container_volume 24
creator Bartelli, Nicholas L.
Hazelbauer, Gerald L.
description Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.
doi_str_mv 10.1002/pro.2767
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4622210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3845511241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4717-fc3be3582c97ff7e02222ad42b851e8d3c9fc46f48e40dacadad586205fc53513</originalsourceid><addsrcrecordid>eNqNkdtqFTEUQIMo9rQKfoEM-OLLtLlNMvMiSG1VKFREwbeQSXY8qTPJmMzRngfBT_Ab_RIzPbVeQDAQcltZOzsboQcEHxKM6dGU4iGVQt5CK8JFV7edeHcbrXAnSN0y0e6h_ZwvMMacUHYX7VFBG8k6sUJfnnnnIEGYvR6qXpsPfQxQ2W3Qoze5iq4ycZx08DFUaxi8gVz5UM1rqOByhmDB7vbLdRP9APb712_LpLJx1IUsBr2IZ0hLCLOGMSYwMM0x3UN3nB4y3L8eD9Db05M3xy_qs_PnL4-fntWGSyJrZ1gPrGmp6aRzEjAtTVtO-7Yh0FpmOme4cLwFjq022mrbtILixpmGNYQdoCc777TpR7CmpJv0oKbkR522Kmqv_jwJfq3ex0-KixKJ4CJ4fC1I8eMG8qxGnw0Mgw4QN1kRyUX59JY1_4FS2XW8w7ygj_5CL-ImhfITCyVY6UL8EpoUc07gbt5NsFrKX9ZRLeUv6MPf87wBf9a7APUO-Fwqtf2nSL16fX4l_AHArLz1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726372666</pqid></control><display><type>article</type><title>Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor</title><source>Wiley Online Library - AutoHoldings Journals</source><source>PubMed Central Free</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bartelli, Nicholas L. ; Hazelbauer, Gerald L.</creator><creatorcontrib>Bartelli, Nicholas L. ; Hazelbauer, Gerald L.</creatorcontrib><description>Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.2767</identifier><identifier>PMID: 26257396</identifier><identifier>CODEN: PRCIEI</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>bacterial chemotaxis ; chemoreceptors ; Chemotaxis - physiology ; E coli ; Electron Spin Resonance Spectroscopy ; EPR spectroscopy ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; helical coiled‐coils ; helical dynamics ; Membranes ; Molecular Dynamics Simulation ; protein dynamics ; Protein folding ; Protein Structure, Secondary ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - metabolism ; Spin Labels ; transmembrane receptors</subject><ispartof>Protein science, 2015-11, Vol.24 (11), p.1764-1776</ispartof><rights>2015 The Protein Society</rights><rights>2015 The Protein Society.</rights><rights>2015 The Protein Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4717-fc3be3582c97ff7e02222ad42b851e8d3c9fc46f48e40dacadad586205fc53513</citedby><cites>FETCH-LOGICAL-c4717-fc3be3582c97ff7e02222ad42b851e8d3c9fc46f48e40dacadad586205fc53513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622210/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622210/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26257396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartelli, Nicholas L.</creatorcontrib><creatorcontrib>Hazelbauer, Gerald L.</creatorcontrib><title>Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.</description><subject>bacterial chemotaxis</subject><subject>chemoreceptors</subject><subject>Chemotaxis - physiology</subject><subject>E coli</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>EPR spectroscopy</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>helical coiled‐coils</subject><subject>helical dynamics</subject><subject>Membranes</subject><subject>Molecular Dynamics Simulation</subject><subject>protein dynamics</subject><subject>Protein folding</subject><subject>Protein Structure, Secondary</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Spin Labels</subject><subject>transmembrane receptors</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdtqFTEUQIMo9rQKfoEM-OLLtLlNMvMiSG1VKFREwbeQSXY8qTPJmMzRngfBT_Ab_RIzPbVeQDAQcltZOzsboQcEHxKM6dGU4iGVQt5CK8JFV7edeHcbrXAnSN0y0e6h_ZwvMMacUHYX7VFBG8k6sUJfnnnnIEGYvR6qXpsPfQxQ2W3Qoze5iq4ycZx08DFUaxi8gVz5UM1rqOByhmDB7vbLdRP9APb712_LpLJx1IUsBr2IZ0hLCLOGMSYwMM0x3UN3nB4y3L8eD9Db05M3xy_qs_PnL4-fntWGSyJrZ1gPrGmp6aRzEjAtTVtO-7Yh0FpmOme4cLwFjq022mrbtILixpmGNYQdoCc777TpR7CmpJv0oKbkR522Kmqv_jwJfq3ex0-KixKJ4CJ4fC1I8eMG8qxGnw0Mgw4QN1kRyUX59JY1_4FS2XW8w7ygj_5CL-ImhfITCyVY6UL8EpoUc07gbt5NsFrKX9ZRLeUv6MPf87wBf9a7APUO-Fwqtf2nSL16fX4l_AHArLz1</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Bartelli, Nicholas L.</creator><creator>Hazelbauer, Gerald L.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>201511</creationdate><title>Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor</title><author>Bartelli, Nicholas L. ; Hazelbauer, Gerald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4717-fc3be3582c97ff7e02222ad42b851e8d3c9fc46f48e40dacadad586205fc53513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bacterial chemotaxis</topic><topic>chemoreceptors</topic><topic>Chemotaxis - physiology</topic><topic>E coli</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>EPR spectroscopy</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>helical coiled‐coils</topic><topic>helical dynamics</topic><topic>Membranes</topic><topic>Molecular Dynamics Simulation</topic><topic>protein dynamics</topic><topic>Protein folding</topic><topic>Protein Structure, Secondary</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Spin Labels</topic><topic>transmembrane receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartelli, Nicholas L.</creatorcontrib><creatorcontrib>Hazelbauer, Gerald L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartelli, Nicholas L.</au><au>Hazelbauer, Gerald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2015-11</date><risdate>2015</risdate><volume>24</volume><issue>11</issue><spage>1764</spage><epage>1776</epage><pages>1764-1776</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><coden>PRCIEI</coden><abstract>Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26257396</pmid><doi>10.1002/pro.2767</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2015-11, Vol.24 (11), p.1764-1776
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4622210
source Wiley Online Library - AutoHoldings Journals; PubMed Central Free; MEDLINE; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects bacterial chemotaxis
chemoreceptors
Chemotaxis - physiology
E coli
Electron Spin Resonance Spectroscopy
EPR spectroscopy
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
helical coiled‐coils
helical dynamics
Membranes
Molecular Dynamics Simulation
protein dynamics
Protein folding
Protein Structure, Secondary
Receptors, Cell Surface - chemistry
Receptors, Cell Surface - metabolism
Spin Labels
transmembrane receptors
title Differential backbone dynamics of companion helices in the extended helical coiled‐coil domain of a bacterial chemoreceptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20backbone%20dynamics%20of%20companion%20helices%20in%20the%20extended%20helical%20coiled%E2%80%90coil%20domain%20of%20a%20bacterial%20chemoreceptor&rft.jtitle=Protein%20science&rft.au=Bartelli,%20Nicholas%20L.&rft.date=2015-11&rft.volume=24&rft.issue=11&rft.spage=1764&rft.epage=1776&rft.pages=1764-1776&rft.issn=0961-8368&rft.eissn=1469-896X&rft.coden=PRCIEI&rft_id=info:doi/10.1002/pro.2767&rft_dat=%3Cproquest_pubme%3E3845511241%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1726372666&rft_id=info:pmid/26257396&rfr_iscdi=true