Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection
The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2015-01, Vol.2015 (2015), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2015 |
creator | Ma, Xin Sun, Xiao Guo, Jing |
description | The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information. |
doi_str_mv | 10.1155/2015/425810 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4620426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458161419</galeid><sourcerecordid>A458161419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-b3ab61d98980c34ba5eb0a296812937891b72db11a90dbefe2327f92f5ecb5df3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpiTuyxAWBQv0d-4K0rSggtYC29Gw58WTXVWKXOGnpkX-Owy5L4VRfbM88eseeeYviOcFvCRHiiGIijjgViuBHxT5lhJeScPJ4d2ZsrzhM6QrnpYjEWj4t9qgUnCmJ94ufF_B9gtBAeWwTOPR1AOeb0ceAYouWnxflsQ_Oh1XOxBF8SOgyzdelDS726DQOkEZ068c1OvfB91OPluCm4Gxo7tC5_bENdXCTI4BOwY7TAOgiR37XeVY8aW2X4HC7HxSXp--_nXwsz758-HSyOCsbQdVY1szWkjittMIN47UVUGNLtVSEalYpTeqKupoQq7GroQXKaNVq2gpoauFadlC82-heT3UProEwDrYz14Pv7XBnovXm30zwa7OKN4ZLijmVWeDVVmCIuWdpNL1PDXSdDRCnZEjFqKJCygehpNKk4jqjL_9Dr-I0hNyJTFEpFcei-kutbAfGhzbmJzazqFnwPPx55rPWmw3VDDGlAdrd7wg2s13MbBezsUumX9xvyI79Y44MvN4A62wBe-sfpgYZgdbeg4XgnLBfAAvQiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726684057</pqid></control><display><type>article</type><title>Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection</title><source>MEDLINE</source><source>Wiley Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Ma, Xin ; Sun, Xiao ; Guo, Jing</creator><contributor>McGuffin, Liam</contributor><creatorcontrib>Ma, Xin ; Sun, Xiao ; Guo, Jing ; McGuffin, Liam</creatorcontrib><description>The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2015/425810</identifier><identifier>PMID: 26543860</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Amino Acids - chemistry ; Binding proteins ; Biomedical research ; Computational Biology - methods ; Databases, Protein ; Health aspects ; Hydrophobic and Hydrophilic Interactions ; Methods ; Models, Statistical ; Reproducibility of Results ; RNA - chemistry ; RNA sequencing ; RNA-Binding Proteins - chemistry ; Static Electricity</subject><ispartof>BioMed research international, 2015-01, Vol.2015 (2015), p.1-10</ispartof><rights>Copyright © 2015 Xin Ma et al.</rights><rights>COPYRIGHT 2015 John Wiley & Sons, Inc.</rights><rights>Copyright © 2015 Xin Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2015 Xin Ma et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-b3ab61d98980c34ba5eb0a296812937891b72db11a90dbefe2327f92f5ecb5df3</citedby><cites>FETCH-LOGICAL-c528t-b3ab61d98980c34ba5eb0a296812937891b72db11a90dbefe2327f92f5ecb5df3</cites><orcidid>0000-0002-8101-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620426/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620426/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26543860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McGuffin, Liam</contributor><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Sun, Xiao</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><title>Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.</description><subject>Algorithms</subject><subject>Amino Acids - chemistry</subject><subject>Binding proteins</subject><subject>Biomedical research</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Health aspects</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Reproducibility of Results</subject><subject>RNA - chemistry</subject><subject>RNA sequencing</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>Static Electricity</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhiMEolXpiTuyxAWBQv0d-4K0rSggtYC29Gw58WTXVWKXOGnpkX-Owy5L4VRfbM88eseeeYviOcFvCRHiiGIijjgViuBHxT5lhJeScPJ4d2ZsrzhM6QrnpYjEWj4t9qgUnCmJ94ufF_B9gtBAeWwTOPR1AOeb0ceAYouWnxflsQ_Oh1XOxBF8SOgyzdelDS726DQOkEZ068c1OvfB91OPluCm4Gxo7tC5_bENdXCTI4BOwY7TAOgiR37XeVY8aW2X4HC7HxSXp--_nXwsz758-HSyOCsbQdVY1szWkjittMIN47UVUGNLtVSEalYpTeqKupoQq7GroQXKaNVq2gpoauFadlC82-heT3UProEwDrYz14Pv7XBnovXm30zwa7OKN4ZLijmVWeDVVmCIuWdpNL1PDXSdDRCnZEjFqKJCygehpNKk4jqjL_9Dr-I0hNyJTFEpFcei-kutbAfGhzbmJzazqFnwPPx55rPWmw3VDDGlAdrd7wg2s13MbBezsUumX9xvyI79Y44MvN4A62wBe-sfpgYZgdbeg4XgnLBfAAvQiA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ma, Xin</creator><creator>Sun, Xiao</creator><creator>Guo, Jing</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8101-7271</orcidid></search><sort><creationdate>20150101</creationdate><title>Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection</title><author>Ma, Xin ; Sun, Xiao ; Guo, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-b3ab61d98980c34ba5eb0a296812937891b72db11a90dbefe2327f92f5ecb5df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Amino Acids - chemistry</topic><topic>Binding proteins</topic><topic>Biomedical research</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Health aspects</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Reproducibility of Results</topic><topic>RNA - chemistry</topic><topic>RNA sequencing</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Sun, Xiao</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xin</au><au>Sun, Xiao</au><au>Guo, Jing</au><au>McGuffin, Liam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26543860</pmid><doi>10.1155/2015/425810</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8101-7271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2015-01, Vol.2015 (2015), p.1-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4620426 |
source | MEDLINE; Wiley Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Amino Acids - chemistry Binding proteins Biomedical research Computational Biology - methods Databases, Protein Health aspects Hydrophobic and Hydrophilic Interactions Methods Models, Statistical Reproducibility of Results RNA - chemistry RNA sequencing RNA-Binding Proteins - chemistry Static Electricity |
title | Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-Based%20Prediction%20of%20RNA-Binding%20Proteins%20Using%20Random%20Forest%20with%20Minimum%20Redundancy%20Maximum%20Relevance%20Feature%20Selection&rft.jtitle=BioMed%20research%20international&rft.au=Ma,%20Xin&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2015/425810&rft_dat=%3Cgale_pubme%3EA458161419%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1726684057&rft_id=info:pmid/26543860&rft_galeid=A458161419&rfr_iscdi=true |