Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome
We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age...
Gespeichert in:
Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Tex.), 2015-01, Vol.14 (11), p.1643-1656 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1656 |
---|---|
container_issue | 11 |
container_start_page | 1643 |
container_title | Cell cycle (Georgetown, Tex.) |
container_volume | 14 |
creator | Beach, Adam Richard, Vincent R Bourque, Simon Boukh-Viner, Tatiana Kyryakov, Pavlo Gomez-Perez, Alejandra Arlia-Ciommo, Anthony Feldman, Rachel Leonov, Anna Piano, Amanda Svistkova, Veronika Titorenko, Vladimir I |
description | We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan. |
doi_str_mv | 10.1080/15384101.2015.1026493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686070034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</originalsourceid><addsrcrecordid>eNpVUduK1TAUDaI44-gnKHn0pWOubfoiyOANDviiz2E33W0jbXNM0oHzR36mKefMqBCSkL0u2XsR8pqzW84Me8e1NIozfisY1-VJ1KqVT8g115pXijH9dL9LU-2gK_IipZ-MCdO0_Dm5EtrItjHimvw--DwFN4XZO9r5GSk435fNbcs2Q8ae-pWeEFKmi887cu2jBxqimzDlWCCJAu3xHudwXHDNNAwU1rKyr2D060gdznMRi_QIOWNcaXeiDra012DEKuLZyU2wjkWuOP6lxJAxLPiSPBtgTvjqct6QH58-fr_7Uh2-ff569-FQOdU0uZK1EUY4jaAkaNNpAYoPQhmQTIHpjUJh-ABMYstA676A6rZhjZZlZrKTN-T9Wfe4dQv2rjQUYbbH6BeIJxvA2_8rq5_sGO6tqrkSdVsE3l4EYvi1lRHZxae9HVgxbMny2tSsYUyqAtVnqIshpYjDow1ndk_ZPqRs95TtJeXCe_PvHx9ZD7HKP5jUptI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686070034</pqid></control><display><type>article</type><title>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Beach, Adam ; Richard, Vincent R ; Bourque, Simon ; Boukh-Viner, Tatiana ; Kyryakov, Pavlo ; Gomez-Perez, Alejandra ; Arlia-Ciommo, Anthony ; Feldman, Rachel ; Leonov, Anna ; Piano, Amanda ; Svistkova, Veronika ; Titorenko, Vladimir I</creator><creatorcontrib>Beach, Adam ; Richard, Vincent R ; Bourque, Simon ; Boukh-Viner, Tatiana ; Kyryakov, Pavlo ; Gomez-Perez, Alejandra ; Arlia-Ciommo, Anthony ; Feldman, Rachel ; Leonov, Anna ; Piano, Amanda ; Svistkova, Veronika ; Titorenko, Vladimir I</creatorcontrib><description>We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2015.1026493</identifier><identifier>PMID: 25839782</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Gene Expression Regulation - drug effects ; Lithocholic Acid - pharmacokinetics ; Lithocholic Acid - pharmacology ; Longevity - drug effects ; Mass Spectrometry ; Membrane Lipids - metabolism ; Mitochondrial Proteins - metabolism ; Models, Biological ; Regulon - genetics ; Saccharomyces cerevisiae - metabolism ; Signal Transduction - genetics ; Signal Transduction - physiology ; Time Factors</subject><ispartof>Cell cycle (Georgetown, Tex.), 2015-01, Vol.14 (11), p.1643-1656</ispartof><rights>2015 Taylor & Francis Group, LLC 2015 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</citedby><cites>FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614269/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614269/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25839782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beach, Adam</creatorcontrib><creatorcontrib>Richard, Vincent R</creatorcontrib><creatorcontrib>Bourque, Simon</creatorcontrib><creatorcontrib>Boukh-Viner, Tatiana</creatorcontrib><creatorcontrib>Kyryakov, Pavlo</creatorcontrib><creatorcontrib>Gomez-Perez, Alejandra</creatorcontrib><creatorcontrib>Arlia-Ciommo, Anthony</creatorcontrib><creatorcontrib>Feldman, Rachel</creatorcontrib><creatorcontrib>Leonov, Anna</creatorcontrib><creatorcontrib>Piano, Amanda</creatorcontrib><creatorcontrib>Svistkova, Veronika</creatorcontrib><creatorcontrib>Titorenko, Vladimir I</creatorcontrib><title>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.</description><subject>Gene Expression Regulation - drug effects</subject><subject>Lithocholic Acid - pharmacokinetics</subject><subject>Lithocholic Acid - pharmacology</subject><subject>Longevity - drug effects</subject><subject>Mass Spectrometry</subject><subject>Membrane Lipids - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Regulon - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Time Factors</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUduK1TAUDaI44-gnKHn0pWOubfoiyOANDviiz2E33W0jbXNM0oHzR36mKefMqBCSkL0u2XsR8pqzW84Me8e1NIozfisY1-VJ1KqVT8g115pXijH9dL9LU-2gK_IipZ-MCdO0_Dm5EtrItjHimvw--DwFN4XZO9r5GSk435fNbcs2Q8ae-pWeEFKmi887cu2jBxqimzDlWCCJAu3xHudwXHDNNAwU1rKyr2D060gdznMRi_QIOWNcaXeiDra012DEKuLZyU2wjkWuOP6lxJAxLPiSPBtgTvjqct6QH58-fr_7Uh2-ff569-FQOdU0uZK1EUY4jaAkaNNpAYoPQhmQTIHpjUJh-ABMYstA676A6rZhjZZlZrKTN-T9Wfe4dQv2rjQUYbbH6BeIJxvA2_8rq5_sGO6tqrkSdVsE3l4EYvi1lRHZxae9HVgxbMny2tSsYUyqAtVnqIshpYjDow1ndk_ZPqRs95TtJeXCe_PvHx9ZD7HKP5jUptI</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Beach, Adam</creator><creator>Richard, Vincent R</creator><creator>Bourque, Simon</creator><creator>Boukh-Viner, Tatiana</creator><creator>Kyryakov, Pavlo</creator><creator>Gomez-Perez, Alejandra</creator><creator>Arlia-Ciommo, Anthony</creator><creator>Feldman, Rachel</creator><creator>Leonov, Anna</creator><creator>Piano, Amanda</creator><creator>Svistkova, Veronika</creator><creator>Titorenko, Vladimir I</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</title><author>Beach, Adam ; Richard, Vincent R ; Bourque, Simon ; Boukh-Viner, Tatiana ; Kyryakov, Pavlo ; Gomez-Perez, Alejandra ; Arlia-Ciommo, Anthony ; Feldman, Rachel ; Leonov, Anna ; Piano, Amanda ; Svistkova, Veronika ; Titorenko, Vladimir I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Gene Expression Regulation - drug effects</topic><topic>Lithocholic Acid - pharmacokinetics</topic><topic>Lithocholic Acid - pharmacology</topic><topic>Longevity - drug effects</topic><topic>Mass Spectrometry</topic><topic>Membrane Lipids - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Regulon - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beach, Adam</creatorcontrib><creatorcontrib>Richard, Vincent R</creatorcontrib><creatorcontrib>Bourque, Simon</creatorcontrib><creatorcontrib>Boukh-Viner, Tatiana</creatorcontrib><creatorcontrib>Kyryakov, Pavlo</creatorcontrib><creatorcontrib>Gomez-Perez, Alejandra</creatorcontrib><creatorcontrib>Arlia-Ciommo, Anthony</creatorcontrib><creatorcontrib>Feldman, Rachel</creatorcontrib><creatorcontrib>Leonov, Anna</creatorcontrib><creatorcontrib>Piano, Amanda</creatorcontrib><creatorcontrib>Svistkova, Veronika</creatorcontrib><creatorcontrib>Titorenko, Vladimir I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beach, Adam</au><au>Richard, Vincent R</au><au>Bourque, Simon</au><au>Boukh-Viner, Tatiana</au><au>Kyryakov, Pavlo</au><au>Gomez-Perez, Alejandra</au><au>Arlia-Ciommo, Anthony</au><au>Feldman, Rachel</au><au>Leonov, Anna</au><au>Piano, Amanda</au><au>Svistkova, Veronika</au><au>Titorenko, Vladimir I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>14</volume><issue>11</issue><spage>1643</spage><epage>1656</epage><pages>1643-1656</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>25839782</pmid><doi>10.1080/15384101.2015.1026493</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4101 |
ispartof | Cell cycle (Georgetown, Tex.), 2015-01, Vol.14 (11), p.1643-1656 |
issn | 1538-4101 1551-4005 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614269 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Gene Expression Regulation - drug effects Lithocholic Acid - pharmacokinetics Lithocholic Acid - pharmacology Longevity - drug effects Mass Spectrometry Membrane Lipids - metabolism Mitochondrial Proteins - metabolism Models, Biological Regulon - genetics Saccharomyces cerevisiae - metabolism Signal Transduction - genetics Signal Transduction - physiology Time Factors |
title | Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithocholic%20bile%20acid%20accumulated%20in%20yeast%20mitochondria%20orchestrates%20a%20development%20of%20an%20anti-aging%20cellular%20pattern%20by%20causing%20age-related%20changes%20in%20cellular%20proteome&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Beach,%20Adam&rft.date=2015-01-01&rft.volume=14&rft.issue=11&rft.spage=1643&rft.epage=1656&rft.pages=1643-1656&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2015.1026493&rft_dat=%3Cproquest_pubme%3E1686070034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686070034&rft_id=info:pmid/25839782&rfr_iscdi=true |