Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome

We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2015-01, Vol.14 (11), p.1643-1656
Hauptverfasser: Beach, Adam, Richard, Vincent R, Bourque, Simon, Boukh-Viner, Tatiana, Kyryakov, Pavlo, Gomez-Perez, Alejandra, Arlia-Ciommo, Anthony, Feldman, Rachel, Leonov, Anna, Piano, Amanda, Svistkova, Veronika, Titorenko, Vladimir I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1656
container_issue 11
container_start_page 1643
container_title Cell cycle (Georgetown, Tex.)
container_volume 14
creator Beach, Adam
Richard, Vincent R
Bourque, Simon
Boukh-Viner, Tatiana
Kyryakov, Pavlo
Gomez-Perez, Alejandra
Arlia-Ciommo, Anthony
Feldman, Rachel
Leonov, Anna
Piano, Amanda
Svistkova, Veronika
Titorenko, Vladimir I
description We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.
doi_str_mv 10.1080/15384101.2015.1026493
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686070034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</originalsourceid><addsrcrecordid>eNpVUduK1TAUDaI44-gnKHn0pWOubfoiyOANDviiz2E33W0jbXNM0oHzR36mKefMqBCSkL0u2XsR8pqzW84Me8e1NIozfisY1-VJ1KqVT8g115pXijH9dL9LU-2gK_IipZ-MCdO0_Dm5EtrItjHimvw--DwFN4XZO9r5GSk435fNbcs2Q8ae-pWeEFKmi887cu2jBxqimzDlWCCJAu3xHudwXHDNNAwU1rKyr2D060gdznMRi_QIOWNcaXeiDra012DEKuLZyU2wjkWuOP6lxJAxLPiSPBtgTvjqct6QH58-fr_7Uh2-ff569-FQOdU0uZK1EUY4jaAkaNNpAYoPQhmQTIHpjUJh-ABMYstA676A6rZhjZZlZrKTN-T9Wfe4dQv2rjQUYbbH6BeIJxvA2_8rq5_sGO6tqrkSdVsE3l4EYvi1lRHZxae9HVgxbMny2tSsYUyqAtVnqIshpYjDow1ndk_ZPqRs95TtJeXCe_PvHx9ZD7HKP5jUptI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686070034</pqid></control><display><type>article</type><title>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Beach, Adam ; Richard, Vincent R ; Bourque, Simon ; Boukh-Viner, Tatiana ; Kyryakov, Pavlo ; Gomez-Perez, Alejandra ; Arlia-Ciommo, Anthony ; Feldman, Rachel ; Leonov, Anna ; Piano, Amanda ; Svistkova, Veronika ; Titorenko, Vladimir I</creator><creatorcontrib>Beach, Adam ; Richard, Vincent R ; Bourque, Simon ; Boukh-Viner, Tatiana ; Kyryakov, Pavlo ; Gomez-Perez, Alejandra ; Arlia-Ciommo, Anthony ; Feldman, Rachel ; Leonov, Anna ; Piano, Amanda ; Svistkova, Veronika ; Titorenko, Vladimir I</creatorcontrib><description>We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2015.1026493</identifier><identifier>PMID: 25839782</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Gene Expression Regulation - drug effects ; Lithocholic Acid - pharmacokinetics ; Lithocholic Acid - pharmacology ; Longevity - drug effects ; Mass Spectrometry ; Membrane Lipids - metabolism ; Mitochondrial Proteins - metabolism ; Models, Biological ; Regulon - genetics ; Saccharomyces cerevisiae - metabolism ; Signal Transduction - genetics ; Signal Transduction - physiology ; Time Factors</subject><ispartof>Cell cycle (Georgetown, Tex.), 2015-01, Vol.14 (11), p.1643-1656</ispartof><rights>2015 Taylor &amp; Francis Group, LLC 2015 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</citedby><cites>FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614269/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614269/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25839782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beach, Adam</creatorcontrib><creatorcontrib>Richard, Vincent R</creatorcontrib><creatorcontrib>Bourque, Simon</creatorcontrib><creatorcontrib>Boukh-Viner, Tatiana</creatorcontrib><creatorcontrib>Kyryakov, Pavlo</creatorcontrib><creatorcontrib>Gomez-Perez, Alejandra</creatorcontrib><creatorcontrib>Arlia-Ciommo, Anthony</creatorcontrib><creatorcontrib>Feldman, Rachel</creatorcontrib><creatorcontrib>Leonov, Anna</creatorcontrib><creatorcontrib>Piano, Amanda</creatorcontrib><creatorcontrib>Svistkova, Veronika</creatorcontrib><creatorcontrib>Titorenko, Vladimir I</creatorcontrib><title>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.</description><subject>Gene Expression Regulation - drug effects</subject><subject>Lithocholic Acid - pharmacokinetics</subject><subject>Lithocholic Acid - pharmacology</subject><subject>Longevity - drug effects</subject><subject>Mass Spectrometry</subject><subject>Membrane Lipids - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Regulon - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Time Factors</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUduK1TAUDaI44-gnKHn0pWOubfoiyOANDviiz2E33W0jbXNM0oHzR36mKefMqBCSkL0u2XsR8pqzW84Me8e1NIozfisY1-VJ1KqVT8g115pXijH9dL9LU-2gK_IipZ-MCdO0_Dm5EtrItjHimvw--DwFN4XZO9r5GSk435fNbcs2Q8ae-pWeEFKmi887cu2jBxqimzDlWCCJAu3xHudwXHDNNAwU1rKyr2D060gdznMRi_QIOWNcaXeiDra012DEKuLZyU2wjkWuOP6lxJAxLPiSPBtgTvjqct6QH58-fr_7Uh2-ff569-FQOdU0uZK1EUY4jaAkaNNpAYoPQhmQTIHpjUJh-ABMYstA676A6rZhjZZlZrKTN-T9Wfe4dQv2rjQUYbbH6BeIJxvA2_8rq5_sGO6tqrkSdVsE3l4EYvi1lRHZxae9HVgxbMny2tSsYUyqAtVnqIshpYjDow1ndk_ZPqRs95TtJeXCe_PvHx9ZD7HKP5jUptI</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Beach, Adam</creator><creator>Richard, Vincent R</creator><creator>Bourque, Simon</creator><creator>Boukh-Viner, Tatiana</creator><creator>Kyryakov, Pavlo</creator><creator>Gomez-Perez, Alejandra</creator><creator>Arlia-Ciommo, Anthony</creator><creator>Feldman, Rachel</creator><creator>Leonov, Anna</creator><creator>Piano, Amanda</creator><creator>Svistkova, Veronika</creator><creator>Titorenko, Vladimir I</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</title><author>Beach, Adam ; Richard, Vincent R ; Bourque, Simon ; Boukh-Viner, Tatiana ; Kyryakov, Pavlo ; Gomez-Perez, Alejandra ; Arlia-Ciommo, Anthony ; Feldman, Rachel ; Leonov, Anna ; Piano, Amanda ; Svistkova, Veronika ; Titorenko, Vladimir I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-368282c5ea43a58b52a41f248a304a8d84e281fa03e90a55da5869707530053b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Gene Expression Regulation - drug effects</topic><topic>Lithocholic Acid - pharmacokinetics</topic><topic>Lithocholic Acid - pharmacology</topic><topic>Longevity - drug effects</topic><topic>Mass Spectrometry</topic><topic>Membrane Lipids - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Regulon - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beach, Adam</creatorcontrib><creatorcontrib>Richard, Vincent R</creatorcontrib><creatorcontrib>Bourque, Simon</creatorcontrib><creatorcontrib>Boukh-Viner, Tatiana</creatorcontrib><creatorcontrib>Kyryakov, Pavlo</creatorcontrib><creatorcontrib>Gomez-Perez, Alejandra</creatorcontrib><creatorcontrib>Arlia-Ciommo, Anthony</creatorcontrib><creatorcontrib>Feldman, Rachel</creatorcontrib><creatorcontrib>Leonov, Anna</creatorcontrib><creatorcontrib>Piano, Amanda</creatorcontrib><creatorcontrib>Svistkova, Veronika</creatorcontrib><creatorcontrib>Titorenko, Vladimir I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beach, Adam</au><au>Richard, Vincent R</au><au>Bourque, Simon</au><au>Boukh-Viner, Tatiana</au><au>Kyryakov, Pavlo</au><au>Gomez-Perez, Alejandra</au><au>Arlia-Ciommo, Anthony</au><au>Feldman, Rachel</au><au>Leonov, Anna</au><au>Piano, Amanda</au><au>Svistkova, Veronika</au><au>Titorenko, Vladimir I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>14</volume><issue>11</issue><spage>1643</spage><epage>1656</epage><pages>1643-1656</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>25839782</pmid><doi>10.1080/15384101.2015.1026493</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4101
ispartof Cell cycle (Georgetown, Tex.), 2015-01, Vol.14 (11), p.1643-1656
issn 1538-4101
1551-4005
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614269
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Gene Expression Regulation - drug effects
Lithocholic Acid - pharmacokinetics
Lithocholic Acid - pharmacology
Longevity - drug effects
Mass Spectrometry
Membrane Lipids - metabolism
Mitochondrial Proteins - metabolism
Models, Biological
Regulon - genetics
Saccharomyces cerevisiae - metabolism
Signal Transduction - genetics
Signal Transduction - physiology
Time Factors
title Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithocholic%20bile%20acid%20accumulated%20in%20yeast%20mitochondria%20orchestrates%20a%20development%20of%20an%20anti-aging%20cellular%20pattern%20by%20causing%20age-related%20changes%20in%20cellular%20proteome&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Beach,%20Adam&rft.date=2015-01-01&rft.volume=14&rft.issue=11&rft.spage=1643&rft.epage=1656&rft.pages=1643-1656&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2015.1026493&rft_dat=%3Cproquest_pubme%3E1686070034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686070034&rft_id=info:pmid/25839782&rfr_iscdi=true