Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase

The Fe­(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2015-10, Vol.54 (39), p.6093-6105
Hauptverfasser: Longbotham, James E, Levy, Colin, Johannissen, Linus O, Tarhonskaya, Hanna, Jiang, Shuo, Loenarz, Christoph, Flashman, Emily, Hay, Sam, Schofield, Christopher J, Scrutton, Nigel S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6105
container_issue 39
container_start_page 6093
container_title Biochemistry (Easton)
container_volume 54
creator Longbotham, James E
Levy, Colin
Johannissen, Linus O
Tarhonskaya, Hanna
Jiang, Shuo
Loenarz, Christoph
Flashman, Emily
Hay, Sam
Schofield, Christopher J
Scrutton, Nigel S
description The Fe­(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe­(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe­(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.
doi_str_mv 10.1021/acs.biochem.5b00789
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4613865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718914295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</originalsourceid><addsrcrecordid>eNqNkd1LwzAUxYMobn78BYL00ZfOpEtvk5eBDHWCouDHa0jT262jbTRpxf33ZmyKvohP4ZJzDufeHyEnjI4YTdi5Nn6UV9YssBmlOaWZkDtkyNKExlzKdJcMKaUQJxLogBx4vwwjpxnfJ4MExiBokgzJ5LFzvel6h5Fui-gOzUK3lW8iW0Y6eqmcrqOprWs9xzZ6cLZe1dFsVTj7saq1xyOyV-ra4_H2PSTPV5dP01l8e399M724jTXPRBdrkxvOJSuTUBO4lhzRAAONTGTMlACgeYomLaDIi5whLUHyAlKRp5BRPj4kk03ua583WBhsu9BMvbqq0W6lrK7U75-2Wqi5fVcc2FhAGgLOtgHOvvXoO9VU3mBYrEXbe8UyDkLIcKJ_SJmQjCdynTreSI2z3jssvxsxqtaQVICktpDUFlJwnf5c5tvzRSUIzjeCtXtpe9eG2_4Z-Qm7LaDT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718914295</pqid></control><display><type>article</type><title>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</title><source>MEDLINE</source><source>ACS Publications</source><creator>Longbotham, James E ; Levy, Colin ; Johannissen, Linus O ; Tarhonskaya, Hanna ; Jiang, Shuo ; Loenarz, Christoph ; Flashman, Emily ; Hay, Sam ; Schofield, Christopher J ; Scrutton, Nigel S</creator><creatorcontrib>Longbotham, James E ; Levy, Colin ; Johannissen, Linus O ; Tarhonskaya, Hanna ; Jiang, Shuo ; Loenarz, Christoph ; Flashman, Emily ; Hay, Sam ; Schofield, Christopher J ; Scrutton, Nigel S</creatorcontrib><description>The Fe­(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe­(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe­(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.5b00789</identifier><identifier>PMID: 26368022</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Motifs ; Catalytic Domain ; Crystallography, X-Ray ; Iron - chemistry ; Phycodnaviridae - enzymology ; Prolyl Hydroxylases - chemistry ; Viral Proteins - chemistry</subject><ispartof>Biochemistry (Easton), 2015-10, Vol.54 (39), p.6093-6105</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</citedby><cites>FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.5b00789$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.5b00789$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26368022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Longbotham, James E</creatorcontrib><creatorcontrib>Levy, Colin</creatorcontrib><creatorcontrib>Johannissen, Linus O</creatorcontrib><creatorcontrib>Tarhonskaya, Hanna</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Loenarz, Christoph</creatorcontrib><creatorcontrib>Flashman, Emily</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Schofield, Christopher J</creatorcontrib><creatorcontrib>Scrutton, Nigel S</creatorcontrib><title>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The Fe­(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe­(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe­(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.</description><subject>Amino Acid Motifs</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Iron - chemistry</subject><subject>Phycodnaviridae - enzymology</subject><subject>Prolyl Hydroxylases - chemistry</subject><subject>Viral Proteins - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd1LwzAUxYMobn78BYL00ZfOpEtvk5eBDHWCouDHa0jT262jbTRpxf33ZmyKvohP4ZJzDufeHyEnjI4YTdi5Nn6UV9YssBmlOaWZkDtkyNKExlzKdJcMKaUQJxLogBx4vwwjpxnfJ4MExiBokgzJ5LFzvel6h5Fui-gOzUK3lW8iW0Y6eqmcrqOprWs9xzZ6cLZe1dFsVTj7saq1xyOyV-ra4_H2PSTPV5dP01l8e399M724jTXPRBdrkxvOJSuTUBO4lhzRAAONTGTMlACgeYomLaDIi5whLUHyAlKRp5BRPj4kk03ua583WBhsu9BMvbqq0W6lrK7U75-2Wqi5fVcc2FhAGgLOtgHOvvXoO9VU3mBYrEXbe8UyDkLIcKJ_SJmQjCdynTreSI2z3jssvxsxqtaQVICktpDUFlJwnf5c5tvzRSUIzjeCtXtpe9eG2_4Z-Qm7LaDT</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Longbotham, James E</creator><creator>Levy, Colin</creator><creator>Johannissen, Linus O</creator><creator>Tarhonskaya, Hanna</creator><creator>Jiang, Shuo</creator><creator>Loenarz, Christoph</creator><creator>Flashman, Emily</creator><creator>Hay, Sam</creator><creator>Schofield, Christopher J</creator><creator>Scrutton, Nigel S</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</title><author>Longbotham, James E ; Levy, Colin ; Johannissen, Linus O ; Tarhonskaya, Hanna ; Jiang, Shuo ; Loenarz, Christoph ; Flashman, Emily ; Hay, Sam ; Schofield, Christopher J ; Scrutton, Nigel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Motifs</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Iron - chemistry</topic><topic>Phycodnaviridae - enzymology</topic><topic>Prolyl Hydroxylases - chemistry</topic><topic>Viral Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longbotham, James E</creatorcontrib><creatorcontrib>Levy, Colin</creatorcontrib><creatorcontrib>Johannissen, Linus O</creatorcontrib><creatorcontrib>Tarhonskaya, Hanna</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Loenarz, Christoph</creatorcontrib><creatorcontrib>Flashman, Emily</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Schofield, Christopher J</creatorcontrib><creatorcontrib>Scrutton, Nigel S</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longbotham, James E</au><au>Levy, Colin</au><au>Johannissen, Linus O</au><au>Tarhonskaya, Hanna</au><au>Jiang, Shuo</au><au>Loenarz, Christoph</au><au>Flashman, Emily</au><au>Hay, Sam</au><au>Schofield, Christopher J</au><au>Scrutton, Nigel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>54</volume><issue>39</issue><spage>6093</spage><epage>6105</epage><pages>6093-6105</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The Fe­(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe­(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe­(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26368022</pmid><doi>10.1021/acs.biochem.5b00789</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2015-10, Vol.54 (39), p.6093-6105
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4613865
source MEDLINE; ACS Publications
subjects Amino Acid Motifs
Catalytic Domain
Crystallography, X-Ray
Iron - chemistry
Phycodnaviridae - enzymology
Prolyl Hydroxylases - chemistry
Viral Proteins - chemistry
title Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Mechanism%20of%20a%20Viral%20Collagen%20Prolyl%20Hydroxylase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Longbotham,%20James%20E&rft.date=2015-10-06&rft.volume=54&rft.issue=39&rft.spage=6093&rft.epage=6105&rft.pages=6093-6105&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.5b00789&rft_dat=%3Cproquest_pubme%3E1718914295%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718914295&rft_id=info:pmid/26368022&rfr_iscdi=true