Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase
The Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH),...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2015-10, Vol.54 (39), p.6093-6105 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6105 |
---|---|
container_issue | 39 |
container_start_page | 6093 |
container_title | Biochemistry (Easton) |
container_volume | 54 |
creator | Longbotham, James E Levy, Colin Johannissen, Linus O Tarhonskaya, Hanna Jiang, Shuo Loenarz, Christoph Flashman, Emily Hay, Sam Schofield, Christopher J Scrutton, Nigel S |
description | The Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest. |
doi_str_mv | 10.1021/acs.biochem.5b00789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4613865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718914295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</originalsourceid><addsrcrecordid>eNqNkd1LwzAUxYMobn78BYL00ZfOpEtvk5eBDHWCouDHa0jT262jbTRpxf33ZmyKvohP4ZJzDufeHyEnjI4YTdi5Nn6UV9YssBmlOaWZkDtkyNKExlzKdJcMKaUQJxLogBx4vwwjpxnfJ4MExiBokgzJ5LFzvel6h5Fui-gOzUK3lW8iW0Y6eqmcrqOprWs9xzZ6cLZe1dFsVTj7saq1xyOyV-ra4_H2PSTPV5dP01l8e399M724jTXPRBdrkxvOJSuTUBO4lhzRAAONTGTMlACgeYomLaDIi5whLUHyAlKRp5BRPj4kk03ua583WBhsu9BMvbqq0W6lrK7U75-2Wqi5fVcc2FhAGgLOtgHOvvXoO9VU3mBYrEXbe8UyDkLIcKJ_SJmQjCdynTreSI2z3jssvxsxqtaQVICktpDUFlJwnf5c5tvzRSUIzjeCtXtpe9eG2_4Z-Qm7LaDT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718914295</pqid></control><display><type>article</type><title>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</title><source>MEDLINE</source><source>ACS Publications</source><creator>Longbotham, James E ; Levy, Colin ; Johannissen, Linus O ; Tarhonskaya, Hanna ; Jiang, Shuo ; Loenarz, Christoph ; Flashman, Emily ; Hay, Sam ; Schofield, Christopher J ; Scrutton, Nigel S</creator><creatorcontrib>Longbotham, James E ; Levy, Colin ; Johannissen, Linus O ; Tarhonskaya, Hanna ; Jiang, Shuo ; Loenarz, Christoph ; Flashman, Emily ; Hay, Sam ; Schofield, Christopher J ; Scrutton, Nigel S</creatorcontrib><description>The Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.5b00789</identifier><identifier>PMID: 26368022</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Motifs ; Catalytic Domain ; Crystallography, X-Ray ; Iron - chemistry ; Phycodnaviridae - enzymology ; Prolyl Hydroxylases - chemistry ; Viral Proteins - chemistry</subject><ispartof>Biochemistry (Easton), 2015-10, Vol.54 (39), p.6093-6105</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright © 2015 American Chemical Society 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</citedby><cites>FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.5b00789$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.5b00789$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26368022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Longbotham, James E</creatorcontrib><creatorcontrib>Levy, Colin</creatorcontrib><creatorcontrib>Johannissen, Linus O</creatorcontrib><creatorcontrib>Tarhonskaya, Hanna</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Loenarz, Christoph</creatorcontrib><creatorcontrib>Flashman, Emily</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Schofield, Christopher J</creatorcontrib><creatorcontrib>Scrutton, Nigel S</creatorcontrib><title>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.</description><subject>Amino Acid Motifs</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Iron - chemistry</subject><subject>Phycodnaviridae - enzymology</subject><subject>Prolyl Hydroxylases - chemistry</subject><subject>Viral Proteins - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd1LwzAUxYMobn78BYL00ZfOpEtvk5eBDHWCouDHa0jT262jbTRpxf33ZmyKvohP4ZJzDufeHyEnjI4YTdi5Nn6UV9YssBmlOaWZkDtkyNKExlzKdJcMKaUQJxLogBx4vwwjpxnfJ4MExiBokgzJ5LFzvel6h5Fui-gOzUK3lW8iW0Y6eqmcrqOprWs9xzZ6cLZe1dFsVTj7saq1xyOyV-ra4_H2PSTPV5dP01l8e399M724jTXPRBdrkxvOJSuTUBO4lhzRAAONTGTMlACgeYomLaDIi5whLUHyAlKRp5BRPj4kk03ua583WBhsu9BMvbqq0W6lrK7U75-2Wqi5fVcc2FhAGgLOtgHOvvXoO9VU3mBYrEXbe8UyDkLIcKJ_SJmQjCdynTreSI2z3jssvxsxqtaQVICktpDUFlJwnf5c5tvzRSUIzjeCtXtpe9eG2_4Z-Qm7LaDT</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Longbotham, James E</creator><creator>Levy, Colin</creator><creator>Johannissen, Linus O</creator><creator>Tarhonskaya, Hanna</creator><creator>Jiang, Shuo</creator><creator>Loenarz, Christoph</creator><creator>Flashman, Emily</creator><creator>Hay, Sam</creator><creator>Schofield, Christopher J</creator><creator>Scrutton, Nigel S</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</title><author>Longbotham, James E ; Levy, Colin ; Johannissen, Linus O ; Tarhonskaya, Hanna ; Jiang, Shuo ; Loenarz, Christoph ; Flashman, Emily ; Hay, Sam ; Schofield, Christopher J ; Scrutton, Nigel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-acbc4491f200764a94eec616ae1871cf666a45ec5d6dbdb1e0f694d658b567043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Motifs</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Iron - chemistry</topic><topic>Phycodnaviridae - enzymology</topic><topic>Prolyl Hydroxylases - chemistry</topic><topic>Viral Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longbotham, James E</creatorcontrib><creatorcontrib>Levy, Colin</creatorcontrib><creatorcontrib>Johannissen, Linus O</creatorcontrib><creatorcontrib>Tarhonskaya, Hanna</creatorcontrib><creatorcontrib>Jiang, Shuo</creatorcontrib><creatorcontrib>Loenarz, Christoph</creatorcontrib><creatorcontrib>Flashman, Emily</creatorcontrib><creatorcontrib>Hay, Sam</creatorcontrib><creatorcontrib>Schofield, Christopher J</creatorcontrib><creatorcontrib>Scrutton, Nigel S</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longbotham, James E</au><au>Levy, Colin</au><au>Johannissen, Linus O</au><au>Tarhonskaya, Hanna</au><au>Jiang, Shuo</au><au>Loenarz, Christoph</au><au>Flashman, Emily</au><au>Hay, Sam</au><au>Schofield, Christopher J</au><au>Scrutton, Nigel S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>54</volume><issue>39</issue><spage>6093</spage><epage>6105</epage><pages>6093-6105</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded β-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural–mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26368022</pmid><doi>10.1021/acs.biochem.5b00789</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2015-10, Vol.54 (39), p.6093-6105 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4613865 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Motifs Catalytic Domain Crystallography, X-Ray Iron - chemistry Phycodnaviridae - enzymology Prolyl Hydroxylases - chemistry Viral Proteins - chemistry |
title | Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Mechanism%20of%20a%20Viral%20Collagen%20Prolyl%20Hydroxylase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Longbotham,%20James%20E&rft.date=2015-10-06&rft.volume=54&rft.issue=39&rft.spage=6093&rft.epage=6105&rft.pages=6093-6105&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.5b00789&rft_dat=%3Cproquest_pubme%3E1718914295%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718914295&rft_id=info:pmid/26368022&rfr_iscdi=true |