ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function

The primary functions of the proteasome are driven by a highly allosteric ATPase complex. ATP binding to only two subunits in this hexameric complex triggers substrate binding, ATPase–20S association and 20S gate opening. However, it is unclear how ATP binding and hydrolysis spatially and temporally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-10, Vol.6 (1), p.8520-8520, Article 8520
Hauptverfasser: Kim, Young-Chan, Snoberger, Aaron, Schupp, Jane, Smith, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8520
container_issue 1
container_start_page 8520
container_title Nature communications
container_volume 6
creator Kim, Young-Chan
Snoberger, Aaron
Schupp, Jane
Smith, David M.
description The primary functions of the proteasome are driven by a highly allosteric ATPase complex. ATP binding to only two subunits in this hexameric complex triggers substrate binding, ATPase–20S association and 20S gate opening. However, it is unclear how ATP binding and hydrolysis spatially and temporally coordinates these allosteric effects to drive substrate translocation into the 20S. Here, we use FRET to show that the proteasomal ATPases from eukaryotes (RPTs) and archaea (PAN) bind ATP with high affinity at neighbouring subunits, which complements the well-established spiral-staircase topology of the 26S ATPases. We further show that two conserved arginine fingers in PAN located at the subunit interface work together as a single allosteric unit to mediate the allosteric effects of ATP binding, without altering the nucleotide-binding pattern. Rapid kinetics analysis also shows that ring resetting of a sequential hydrolysis mechanism can be explained by thermodynamic equilibrium binding of ATP. These data support a model whereby these two functionally distinct allosteric networks cooperate to translocate polypeptides into the 20S for degradation. The 26S proteasome contains a hexamer of ATPase subunits, which binds, unfolds and translocates substrates in an ATP-dependent manner. Kim et al . use FRET to show that ATP binding preferentially occurs at neighbouring subunits of the hexamer, and identify two allosteric systems that coordinate translocation.
doi_str_mv 10.1038/ncomms9520
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4608255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3835454691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7ef9756e63201da868060d204ba3b1bf154d4aee61deafc13b2af66d5be25ba73</originalsourceid><addsrcrecordid>eNplkU9vFSEUxYnR2KZ24wcwJG6MzavAMMzMxqRprJo0aRd1Tfhz55WGgRGGJn57mbxnfVo2cOGXw7n3IPSWknNKmv5TMHGa8tAy8gIdM8LphnaseXlwPkKnOT-QupqB9py_RkdMcNH2jThG4eLuFmsXrAtbvEQcwG3vdSxprXPRJbglYxUsdmGBtL_ByvuYa-0MNrHMfqVLsJC8AzynuIDKcVIeV3mVAY8lmMXF8Aa9GpXPcLrfT9CPqy93l9821zdfv19eXG8M52zZdDAOXStANIxQq3rRE0Fs7UirRlM90pZbrgAEtaBGQxvN1CiEbTWwVquuOUGfd7pz0RNYA2FJyss5uUmlXzIqJ_99Ce5ebuOj5IL0rG2rwIe9QIo_C-RFTi4b8F4FiCXLOlg2MF5NVvT9f-hDnV-o7a0UHajg3ero444yKeacYHwyQ4lck5R_k6zwu0P7T-if3CpwtgPyvCYF6eDP53K_AYMwrHo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721916477</pqid></control><display><type>article</type><title>ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kim, Young-Chan ; Snoberger, Aaron ; Schupp, Jane ; Smith, David M.</creator><creatorcontrib>Kim, Young-Chan ; Snoberger, Aaron ; Schupp, Jane ; Smith, David M.</creatorcontrib><description>The primary functions of the proteasome are driven by a highly allosteric ATPase complex. ATP binding to only two subunits in this hexameric complex triggers substrate binding, ATPase–20S association and 20S gate opening. However, it is unclear how ATP binding and hydrolysis spatially and temporally coordinates these allosteric effects to drive substrate translocation into the 20S. Here, we use FRET to show that the proteasomal ATPases from eukaryotes (RPTs) and archaea (PAN) bind ATP with high affinity at neighbouring subunits, which complements the well-established spiral-staircase topology of the 26S ATPases. We further show that two conserved arginine fingers in PAN located at the subunit interface work together as a single allosteric unit to mediate the allosteric effects of ATP binding, without altering the nucleotide-binding pattern. Rapid kinetics analysis also shows that ring resetting of a sequential hydrolysis mechanism can be explained by thermodynamic equilibrium binding of ATP. These data support a model whereby these two functionally distinct allosteric networks cooperate to translocate polypeptides into the 20S for degradation. The 26S proteasome contains a hexamer of ATPase subunits, which binds, unfolds and translocates substrates in an ATP-dependent manner. Kim et al . use FRET to show that ATP binding preferentially occurs at neighbouring subunits of the hexamer, and identify two allosteric systems that coordinate translocation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9520</identifier><identifier>PMID: 26465836</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/45/474/2085 ; 82/16 ; 82/29 ; 82/80 ; 82/83 ; Adenosine diphosphate ; Adenosine Triphosphatases - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Allosteric Regulation ; Archaea ; Binding ; Binding sites ; Eukaryotes ; Humanities and Social Sciences ; Humans ; Hydrolysis ; multidisciplinary ; Nucleotides ; Pattern analysis ; Polypeptides ; Proteasome Endopeptidase Complex - metabolism ; Proteasomes ; Science ; Science (multidisciplinary) ; Sensors ; Substrates ; Thermodynamic equilibrium ; Topology</subject><ispartof>Nature communications, 2015-10, Vol.6 (1), p.8520-8520, Article 8520</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7ef9756e63201da868060d204ba3b1bf154d4aee61deafc13b2af66d5be25ba73</citedby><cites>FETCH-LOGICAL-c442t-7ef9756e63201da868060d204ba3b1bf154d4aee61deafc13b2af66d5be25ba73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608255/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608255/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26465836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young-Chan</creatorcontrib><creatorcontrib>Snoberger, Aaron</creatorcontrib><creatorcontrib>Schupp, Jane</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><title>ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The primary functions of the proteasome are driven by a highly allosteric ATPase complex. ATP binding to only two subunits in this hexameric complex triggers substrate binding, ATPase–20S association and 20S gate opening. However, it is unclear how ATP binding and hydrolysis spatially and temporally coordinates these allosteric effects to drive substrate translocation into the 20S. Here, we use FRET to show that the proteasomal ATPases from eukaryotes (RPTs) and archaea (PAN) bind ATP with high affinity at neighbouring subunits, which complements the well-established spiral-staircase topology of the 26S ATPases. We further show that two conserved arginine fingers in PAN located at the subunit interface work together as a single allosteric unit to mediate the allosteric effects of ATP binding, without altering the nucleotide-binding pattern. Rapid kinetics analysis also shows that ring resetting of a sequential hydrolysis mechanism can be explained by thermodynamic equilibrium binding of ATP. These data support a model whereby these two functionally distinct allosteric networks cooperate to translocate polypeptides into the 20S for degradation. The 26S proteasome contains a hexamer of ATPase subunits, which binds, unfolds and translocates substrates in an ATP-dependent manner. Kim et al . use FRET to show that ATP binding preferentially occurs at neighbouring subunits of the hexamer, and identify two allosteric systems that coordinate translocation.</description><subject>631/45/173</subject><subject>631/45/474/2085</subject><subject>82/16</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Allosteric Regulation</subject><subject>Archaea</subject><subject>Binding</subject><subject>Binding sites</subject><subject>Eukaryotes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>multidisciplinary</subject><subject>Nucleotides</subject><subject>Pattern analysis</subject><subject>Polypeptides</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasomes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Thermodynamic equilibrium</subject><subject>Topology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9vFSEUxYnR2KZ24wcwJG6MzavAMMzMxqRprJo0aRd1Tfhz55WGgRGGJn57mbxnfVo2cOGXw7n3IPSWknNKmv5TMHGa8tAy8gIdM8LphnaseXlwPkKnOT-QupqB9py_RkdMcNH2jThG4eLuFmsXrAtbvEQcwG3vdSxprXPRJbglYxUsdmGBtL_ByvuYa-0MNrHMfqVLsJC8AzynuIDKcVIeV3mVAY8lmMXF8Aa9GpXPcLrfT9CPqy93l9821zdfv19eXG8M52zZdDAOXStANIxQq3rRE0Fs7UirRlM90pZbrgAEtaBGQxvN1CiEbTWwVquuOUGfd7pz0RNYA2FJyss5uUmlXzIqJ_99Ce5ebuOj5IL0rG2rwIe9QIo_C-RFTi4b8F4FiCXLOlg2MF5NVvT9f-hDnV-o7a0UHajg3ero444yKeacYHwyQ4lck5R_k6zwu0P7T-if3CpwtgPyvCYF6eDP53K_AYMwrHo</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>Kim, Young-Chan</creator><creator>Snoberger, Aaron</creator><creator>Schupp, Jane</creator><creator>Smith, David M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151014</creationdate><title>ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function</title><author>Kim, Young-Chan ; Snoberger, Aaron ; Schupp, Jane ; Smith, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7ef9756e63201da868060d204ba3b1bf154d4aee61deafc13b2af66d5be25ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/45/173</topic><topic>631/45/474/2085</topic><topic>82/16</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Allosteric Regulation</topic><topic>Archaea</topic><topic>Binding</topic><topic>Binding sites</topic><topic>Eukaryotes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>multidisciplinary</topic><topic>Nucleotides</topic><topic>Pattern analysis</topic><topic>Polypeptides</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasomes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Thermodynamic equilibrium</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young-Chan</creatorcontrib><creatorcontrib>Snoberger, Aaron</creatorcontrib><creatorcontrib>Schupp, Jane</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young-Chan</au><au>Snoberger, Aaron</au><au>Schupp, Jane</au><au>Smith, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-10-14</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8520</spage><epage>8520</epage><pages>8520-8520</pages><artnum>8520</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The primary functions of the proteasome are driven by a highly allosteric ATPase complex. ATP binding to only two subunits in this hexameric complex triggers substrate binding, ATPase–20S association and 20S gate opening. However, it is unclear how ATP binding and hydrolysis spatially and temporally coordinates these allosteric effects to drive substrate translocation into the 20S. Here, we use FRET to show that the proteasomal ATPases from eukaryotes (RPTs) and archaea (PAN) bind ATP with high affinity at neighbouring subunits, which complements the well-established spiral-staircase topology of the 26S ATPases. We further show that two conserved arginine fingers in PAN located at the subunit interface work together as a single allosteric unit to mediate the allosteric effects of ATP binding, without altering the nucleotide-binding pattern. Rapid kinetics analysis also shows that ring resetting of a sequential hydrolysis mechanism can be explained by thermodynamic equilibrium binding of ATP. These data support a model whereby these two functionally distinct allosteric networks cooperate to translocate polypeptides into the 20S for degradation. The 26S proteasome contains a hexamer of ATPase subunits, which binds, unfolds and translocates substrates in an ATP-dependent manner. Kim et al . use FRET to show that ATP binding preferentially occurs at neighbouring subunits of the hexamer, and identify two allosteric systems that coordinate translocation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26465836</pmid><doi>10.1038/ncomms9520</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-10, Vol.6 (1), p.8520-8520, Article 8520
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4608255
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 631/45/173
631/45/474/2085
82/16
82/29
82/80
82/83
Adenosine diphosphate
Adenosine Triphosphatases - metabolism
Adenosine triphosphate
Adenosine Triphosphate - metabolism
Allosteric Regulation
Archaea
Binding
Binding sites
Eukaryotes
Humanities and Social Sciences
Humans
Hydrolysis
multidisciplinary
Nucleotides
Pattern analysis
Polypeptides
Proteasome Endopeptidase Complex - metabolism
Proteasomes
Science
Science (multidisciplinary)
Sensors
Substrates
Thermodynamic equilibrium
Topology
title ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP%20binding%20to%20neighbouring%20subunits%20and%20intersubunit%20allosteric%20coupling%20underlie%20proteasomal%20ATPase%20function&rft.jtitle=Nature%20communications&rft.au=Kim,%20Young-Chan&rft.date=2015-10-14&rft.volume=6&rft.issue=1&rft.spage=8520&rft.epage=8520&rft.pages=8520-8520&rft.artnum=8520&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9520&rft_dat=%3Cproquest_pubme%3E3835454691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721916477&rft_id=info:pmid/26465836&rfr_iscdi=true