Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil
High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. H...
Gespeichert in:
Veröffentlicht in: | BMC plant biology 2015-10, Vol.15 (1), p.246-246, Article 246 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 1 |
container_start_page | 246 |
container_title | BMC plant biology |
container_volume | 15 |
creator | Gonzalez, Emmanuel Brereton, Nicholas J B Marleau, Julie Guidi Nissim, Werther Labrecque, Michel Pitre, Frederic E Joly, Simon |
description | High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear.
Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism.
Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees.
The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land. |
doi_str_mv | 10.1186/s12870-015-0636-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541375802</galeid><sourcerecordid>A541375802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</originalsourceid><addsrcrecordid>eNptkstu1TAQhiMEohd4ADYoEhtYpHjs2Ik3SFXFpVIREpe15TiTU1eOfbCdloqXr09PKT0IeWFr5vvHmpm_ql4AOQLoxdsEtO9IQ4A3RDDRyEfVPrQdNJRS-fjBe686SOmCEOj6Vj6t9qhouWQt269-f8asmxy1TybadQ6zNam2frRGZ0z1YEO2pjYxpNTk4LCQBgtQX1nnwlWdIxbMLC7by6IY6-DrNeZY0GWuz6_HGIyOQ4ma4LOerb-lUrDuWfVk0i7h87v7sPrx4f33k0_N2ZePpyfHZ43hAnKDAxupHlrT9yBgIJxSMO1EQVLBDSCTchgnwTidqC79aSmMKEnGR0JG3rHD6t227noZZhwN-tKvU-toZx2vVdBW7Wa8PVercKlaQRjvNwVe3xWI4eeCKavZJoPOaY9hSYoSQjhjTPCCvvoHvQhL9KU9BV0nO-ioJH-plXaorJ9C-ddsiqpj3gLreE9ooY7-Q5UzYtlS8DjZEt8RvNkRbCaOv_JKLymp029fd1nYsrerjTjdzwOI2rhLbd2lirvUxl1KFs3Lh4O8V_yxE7sBHRrLSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779717290</pqid></control><display><type>article</type><title>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Gonzalez, Emmanuel ; Brereton, Nicholas J B ; Marleau, Julie ; Guidi Nissim, Werther ; Labrecque, Michel ; Pitre, Frederic E ; Joly, Simon</creator><creatorcontrib>Gonzalez, Emmanuel ; Brereton, Nicholas J B ; Marleau, Julie ; Guidi Nissim, Werther ; Labrecque, Michel ; Pitre, Frederic E ; Joly, Simon</creatorcontrib><description>High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear.
Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism.
Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees.
The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-015-0636-9</identifier><identifier>PMID: 26459343</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>abiotic stress ; Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; biodiversity ; Bioremediation ; crops ; Environmental aspects ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genetic aspects ; genetic resistance ; Herbivory - drug effects ; Herbivory - genetics ; Hydrocarbons - toxicity ; Molecular Sequence Annotation ; oil and gas industry ; petroleum ; Petroleum - toxicity ; Petroleum refineries ; phenylalanine ammonia-lyase ; Physiological aspects ; polluted soils ; Pollution ; Propanols - metabolism ; Salix - drug effects ; Salix - genetics ; Salix - growth & development ; Salix purpurea ; Soil Pollutants - toxicity ; soil pollution ; species identification ; stress tolerance ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Tetranychus urticae ; transcriptome ; Transcriptome - drug effects ; Transcriptome - genetics ; trees ; Trees - drug effects ; Trees - genetics ; Trees - growth & development</subject><ispartof>BMC plant biology, 2015-10, Vol.15 (1), p.246-246, Article 246</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2015</rights><rights>Gonzalez et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</citedby><cites>FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26459343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez, Emmanuel</creatorcontrib><creatorcontrib>Brereton, Nicholas J B</creatorcontrib><creatorcontrib>Marleau, Julie</creatorcontrib><creatorcontrib>Guidi Nissim, Werther</creatorcontrib><creatorcontrib>Labrecque, Michel</creatorcontrib><creatorcontrib>Pitre, Frederic E</creatorcontrib><creatorcontrib>Joly, Simon</creatorcontrib><title>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear.
Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism.
Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees.
The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.</description><subject>abiotic stress</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>biodiversity</subject><subject>Bioremediation</subject><subject>crops</subject><subject>Environmental aspects</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>genetic resistance</subject><subject>Herbivory - drug effects</subject><subject>Herbivory - genetics</subject><subject>Hydrocarbons - toxicity</subject><subject>Molecular Sequence Annotation</subject><subject>oil and gas industry</subject><subject>petroleum</subject><subject>Petroleum - toxicity</subject><subject>Petroleum refineries</subject><subject>phenylalanine ammonia-lyase</subject><subject>Physiological aspects</subject><subject>polluted soils</subject><subject>Pollution</subject><subject>Propanols - metabolism</subject><subject>Salix - drug effects</subject><subject>Salix - genetics</subject><subject>Salix - growth & development</subject><subject>Salix purpurea</subject><subject>Soil Pollutants - toxicity</subject><subject>soil pollution</subject><subject>species identification</subject><subject>stress tolerance</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Tetranychus urticae</subject><subject>transcriptome</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><subject>trees</subject><subject>Trees - drug effects</subject><subject>Trees - genetics</subject><subject>Trees - growth & development</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkstu1TAQhiMEohd4ADYoEhtYpHjs2Ik3SFXFpVIREpe15TiTU1eOfbCdloqXr09PKT0IeWFr5vvHmpm_ql4AOQLoxdsEtO9IQ4A3RDDRyEfVPrQdNJRS-fjBe686SOmCEOj6Vj6t9qhouWQt269-f8asmxy1TybadQ6zNam2frRGZ0z1YEO2pjYxpNTk4LCQBgtQX1nnwlWdIxbMLC7by6IY6-DrNeZY0GWuz6_HGIyOQ4ma4LOerb-lUrDuWfVk0i7h87v7sPrx4f33k0_N2ZePpyfHZ43hAnKDAxupHlrT9yBgIJxSMO1EQVLBDSCTchgnwTidqC79aSmMKEnGR0JG3rHD6t227noZZhwN-tKvU-toZx2vVdBW7Wa8PVercKlaQRjvNwVe3xWI4eeCKavZJoPOaY9hSYoSQjhjTPCCvvoHvQhL9KU9BV0nO-ioJH-plXaorJ9C-ddsiqpj3gLreE9ooY7-Q5UzYtlS8DjZEt8RvNkRbCaOv_JKLymp029fd1nYsrerjTjdzwOI2rhLbd2lirvUxl1KFs3Lh4O8V_yxE7sBHRrLSA</recordid><startdate>20151012</startdate><enddate>20151012</enddate><creator>Gonzalez, Emmanuel</creator><creator>Brereton, Nicholas J B</creator><creator>Marleau, Julie</creator><creator>Guidi Nissim, Werther</creator><creator>Labrecque, Michel</creator><creator>Pitre, Frederic E</creator><creator>Joly, Simon</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151012</creationdate><title>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</title><author>Gonzalez, Emmanuel ; Brereton, Nicholas J B ; Marleau, Julie ; Guidi Nissim, Werther ; Labrecque, Michel ; Pitre, Frederic E ; Joly, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>abiotic stress</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>biodiversity</topic><topic>Bioremediation</topic><topic>crops</topic><topic>Environmental aspects</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>genetic resistance</topic><topic>Herbivory - drug effects</topic><topic>Herbivory - genetics</topic><topic>Hydrocarbons - toxicity</topic><topic>Molecular Sequence Annotation</topic><topic>oil and gas industry</topic><topic>petroleum</topic><topic>Petroleum - toxicity</topic><topic>Petroleum refineries</topic><topic>phenylalanine ammonia-lyase</topic><topic>Physiological aspects</topic><topic>polluted soils</topic><topic>Pollution</topic><topic>Propanols - metabolism</topic><topic>Salix - drug effects</topic><topic>Salix - genetics</topic><topic>Salix - growth & development</topic><topic>Salix purpurea</topic><topic>Soil Pollutants - toxicity</topic><topic>soil pollution</topic><topic>species identification</topic><topic>stress tolerance</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Tetranychus urticae</topic><topic>transcriptome</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><topic>trees</topic><topic>Trees - drug effects</topic><topic>Trees - genetics</topic><topic>Trees - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Emmanuel</creatorcontrib><creatorcontrib>Brereton, Nicholas J B</creatorcontrib><creatorcontrib>Marleau, Julie</creatorcontrib><creatorcontrib>Guidi Nissim, Werther</creatorcontrib><creatorcontrib>Labrecque, Michel</creatorcontrib><creatorcontrib>Pitre, Frederic E</creatorcontrib><creatorcontrib>Joly, Simon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Emmanuel</au><au>Brereton, Nicholas J B</au><au>Marleau, Julie</au><au>Guidi Nissim, Werther</au><au>Labrecque, Michel</au><au>Pitre, Frederic E</au><au>Joly, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2015-10-12</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>246</spage><epage>246</epage><pages>246-246</pages><artnum>246</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear.
Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism.
Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees.
The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26459343</pmid><doi>10.1186/s12870-015-0636-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2229 |
ispartof | BMC plant biology, 2015-10, Vol.15 (1), p.246-246, Article 246 |
issn | 1471-2229 1471-2229 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603587 |
source | MEDLINE; Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | abiotic stress Adaptation, Physiological - drug effects Adaptation, Physiological - genetics biodiversity Bioremediation crops Environmental aspects Gene Expression Profiling gene expression regulation Gene Expression Regulation, Plant - drug effects Genes Genetic aspects genetic resistance Herbivory - drug effects Herbivory - genetics Hydrocarbons - toxicity Molecular Sequence Annotation oil and gas industry petroleum Petroleum - toxicity Petroleum refineries phenylalanine ammonia-lyase Physiological aspects polluted soils Pollution Propanols - metabolism Salix - drug effects Salix - genetics Salix - growth & development Salix purpurea Soil Pollutants - toxicity soil pollution species identification stress tolerance Stress, Physiological - drug effects Stress, Physiological - genetics Tetranychus urticae transcriptome Transcriptome - drug effects Transcriptome - genetics trees Trees - drug effects Trees - genetics Trees - growth & development |
title | Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-transcriptomics%20indicates%20biotic%20cross-tolerance%20in%20willow%20trees%20cultivated%20on%20petroleum%20hydrocarbon%20contaminated%20soil&rft.jtitle=BMC%20plant%20biology&rft.au=Gonzalez,%20Emmanuel&rft.date=2015-10-12&rft.volume=15&rft.issue=1&rft.spage=246&rft.epage=246&rft.pages=246-246&rft.artnum=246&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-015-0636-9&rft_dat=%3Cgale_pubme%3EA541375802%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779717290&rft_id=info:pmid/26459343&rft_galeid=A541375802&rfr_iscdi=true |