Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil

High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2015-10, Vol.15 (1), p.246-246, Article 246
Hauptverfasser: Gonzalez, Emmanuel, Brereton, Nicholas J B, Marleau, Julie, Guidi Nissim, Werther, Labrecque, Michel, Pitre, Frederic E, Joly, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 1
container_start_page 246
container_title BMC plant biology
container_volume 15
creator Gonzalez, Emmanuel
Brereton, Nicholas J B
Marleau, Julie
Guidi Nissim, Werther
Labrecque, Michel
Pitre, Frederic E
Joly, Simon
description High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.
doi_str_mv 10.1186/s12870-015-0636-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541375802</galeid><sourcerecordid>A541375802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</originalsourceid><addsrcrecordid>eNptkstu1TAQhiMEohd4ADYoEhtYpHjs2Ik3SFXFpVIREpe15TiTU1eOfbCdloqXr09PKT0IeWFr5vvHmpm_ql4AOQLoxdsEtO9IQ4A3RDDRyEfVPrQdNJRS-fjBe686SOmCEOj6Vj6t9qhouWQt269-f8asmxy1TybadQ6zNam2frRGZ0z1YEO2pjYxpNTk4LCQBgtQX1nnwlWdIxbMLC7by6IY6-DrNeZY0GWuz6_HGIyOQ4ma4LOerb-lUrDuWfVk0i7h87v7sPrx4f33k0_N2ZePpyfHZ43hAnKDAxupHlrT9yBgIJxSMO1EQVLBDSCTchgnwTidqC79aSmMKEnGR0JG3rHD6t227noZZhwN-tKvU-toZx2vVdBW7Wa8PVercKlaQRjvNwVe3xWI4eeCKavZJoPOaY9hSYoSQjhjTPCCvvoHvQhL9KU9BV0nO-ioJH-plXaorJ9C-ddsiqpj3gLreE9ooY7-Q5UzYtlS8DjZEt8RvNkRbCaOv_JKLymp029fd1nYsrerjTjdzwOI2rhLbd2lirvUxl1KFs3Lh4O8V_yxE7sBHRrLSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779717290</pqid></control><display><type>article</type><title>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Gonzalez, Emmanuel ; Brereton, Nicholas J B ; Marleau, Julie ; Guidi Nissim, Werther ; Labrecque, Michel ; Pitre, Frederic E ; Joly, Simon</creator><creatorcontrib>Gonzalez, Emmanuel ; Brereton, Nicholas J B ; Marleau, Julie ; Guidi Nissim, Werther ; Labrecque, Michel ; Pitre, Frederic E ; Joly, Simon</creatorcontrib><description>High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-015-0636-9</identifier><identifier>PMID: 26459343</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>abiotic stress ; Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; biodiversity ; Bioremediation ; crops ; Environmental aspects ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genetic aspects ; genetic resistance ; Herbivory - drug effects ; Herbivory - genetics ; Hydrocarbons - toxicity ; Molecular Sequence Annotation ; oil and gas industry ; petroleum ; Petroleum - toxicity ; Petroleum refineries ; phenylalanine ammonia-lyase ; Physiological aspects ; polluted soils ; Pollution ; Propanols - metabolism ; Salix - drug effects ; Salix - genetics ; Salix - growth &amp; development ; Salix purpurea ; Soil Pollutants - toxicity ; soil pollution ; species identification ; stress tolerance ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Tetranychus urticae ; transcriptome ; Transcriptome - drug effects ; Transcriptome - genetics ; trees ; Trees - drug effects ; Trees - genetics ; Trees - growth &amp; development</subject><ispartof>BMC plant biology, 2015-10, Vol.15 (1), p.246-246, Article 246</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2015</rights><rights>Gonzalez et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</citedby><cites>FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26459343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez, Emmanuel</creatorcontrib><creatorcontrib>Brereton, Nicholas J B</creatorcontrib><creatorcontrib>Marleau, Julie</creatorcontrib><creatorcontrib>Guidi Nissim, Werther</creatorcontrib><creatorcontrib>Labrecque, Michel</creatorcontrib><creatorcontrib>Pitre, Frederic E</creatorcontrib><creatorcontrib>Joly, Simon</creatorcontrib><title>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.</description><subject>abiotic stress</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>biodiversity</subject><subject>Bioremediation</subject><subject>crops</subject><subject>Environmental aspects</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>genetic resistance</subject><subject>Herbivory - drug effects</subject><subject>Herbivory - genetics</subject><subject>Hydrocarbons - toxicity</subject><subject>Molecular Sequence Annotation</subject><subject>oil and gas industry</subject><subject>petroleum</subject><subject>Petroleum - toxicity</subject><subject>Petroleum refineries</subject><subject>phenylalanine ammonia-lyase</subject><subject>Physiological aspects</subject><subject>polluted soils</subject><subject>Pollution</subject><subject>Propanols - metabolism</subject><subject>Salix - drug effects</subject><subject>Salix - genetics</subject><subject>Salix - growth &amp; development</subject><subject>Salix purpurea</subject><subject>Soil Pollutants - toxicity</subject><subject>soil pollution</subject><subject>species identification</subject><subject>stress tolerance</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Tetranychus urticae</subject><subject>transcriptome</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><subject>trees</subject><subject>Trees - drug effects</subject><subject>Trees - genetics</subject><subject>Trees - growth &amp; development</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkstu1TAQhiMEohd4ADYoEhtYpHjs2Ik3SFXFpVIREpe15TiTU1eOfbCdloqXr09PKT0IeWFr5vvHmpm_ql4AOQLoxdsEtO9IQ4A3RDDRyEfVPrQdNJRS-fjBe686SOmCEOj6Vj6t9qhouWQt269-f8asmxy1TybadQ6zNam2frRGZ0z1YEO2pjYxpNTk4LCQBgtQX1nnwlWdIxbMLC7by6IY6-DrNeZY0GWuz6_HGIyOQ4ma4LOerb-lUrDuWfVk0i7h87v7sPrx4f33k0_N2ZePpyfHZ43hAnKDAxupHlrT9yBgIJxSMO1EQVLBDSCTchgnwTidqC79aSmMKEnGR0JG3rHD6t227noZZhwN-tKvU-toZx2vVdBW7Wa8PVercKlaQRjvNwVe3xWI4eeCKavZJoPOaY9hSYoSQjhjTPCCvvoHvQhL9KU9BV0nO-ioJH-plXaorJ9C-ddsiqpj3gLreE9ooY7-Q5UzYtlS8DjZEt8RvNkRbCaOv_JKLymp029fd1nYsrerjTjdzwOI2rhLbd2lirvUxl1KFs3Lh4O8V_yxE7sBHRrLSA</recordid><startdate>20151012</startdate><enddate>20151012</enddate><creator>Gonzalez, Emmanuel</creator><creator>Brereton, Nicholas J B</creator><creator>Marleau, Julie</creator><creator>Guidi Nissim, Werther</creator><creator>Labrecque, Michel</creator><creator>Pitre, Frederic E</creator><creator>Joly, Simon</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151012</creationdate><title>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</title><author>Gonzalez, Emmanuel ; Brereton, Nicholas J B ; Marleau, Julie ; Guidi Nissim, Werther ; Labrecque, Michel ; Pitre, Frederic E ; Joly, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-eb3d2ab4c88161b05221c4f219265c1e399bdf6352f2a849a96c619235d00d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>abiotic stress</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>biodiversity</topic><topic>Bioremediation</topic><topic>crops</topic><topic>Environmental aspects</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>genetic resistance</topic><topic>Herbivory - drug effects</topic><topic>Herbivory - genetics</topic><topic>Hydrocarbons - toxicity</topic><topic>Molecular Sequence Annotation</topic><topic>oil and gas industry</topic><topic>petroleum</topic><topic>Petroleum - toxicity</topic><topic>Petroleum refineries</topic><topic>phenylalanine ammonia-lyase</topic><topic>Physiological aspects</topic><topic>polluted soils</topic><topic>Pollution</topic><topic>Propanols - metabolism</topic><topic>Salix - drug effects</topic><topic>Salix - genetics</topic><topic>Salix - growth &amp; development</topic><topic>Salix purpurea</topic><topic>Soil Pollutants - toxicity</topic><topic>soil pollution</topic><topic>species identification</topic><topic>stress tolerance</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Tetranychus urticae</topic><topic>transcriptome</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><topic>trees</topic><topic>Trees - drug effects</topic><topic>Trees - genetics</topic><topic>Trees - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Emmanuel</creatorcontrib><creatorcontrib>Brereton, Nicholas J B</creatorcontrib><creatorcontrib>Marleau, Julie</creatorcontrib><creatorcontrib>Guidi Nissim, Werther</creatorcontrib><creatorcontrib>Labrecque, Michel</creatorcontrib><creatorcontrib>Pitre, Frederic E</creatorcontrib><creatorcontrib>Joly, Simon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Emmanuel</au><au>Brereton, Nicholas J B</au><au>Marleau, Julie</au><au>Guidi Nissim, Werther</au><au>Labrecque, Michel</au><au>Pitre, Frederic E</au><au>Joly, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2015-10-12</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>246</spage><epage>246</epage><pages>246-246</pages><artnum>246</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26459343</pmid><doi>10.1186/s12870-015-0636-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2229
ispartof BMC plant biology, 2015-10, Vol.15 (1), p.246-246, Article 246
issn 1471-2229
1471-2229
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603587
source MEDLINE; Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects abiotic stress
Adaptation, Physiological - drug effects
Adaptation, Physiological - genetics
biodiversity
Bioremediation
crops
Environmental aspects
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation, Plant - drug effects
Genes
Genetic aspects
genetic resistance
Herbivory - drug effects
Herbivory - genetics
Hydrocarbons - toxicity
Molecular Sequence Annotation
oil and gas industry
petroleum
Petroleum - toxicity
Petroleum refineries
phenylalanine ammonia-lyase
Physiological aspects
polluted soils
Pollution
Propanols - metabolism
Salix - drug effects
Salix - genetics
Salix - growth & development
Salix purpurea
Soil Pollutants - toxicity
soil pollution
species identification
stress tolerance
Stress, Physiological - drug effects
Stress, Physiological - genetics
Tetranychus urticae
transcriptome
Transcriptome - drug effects
Transcriptome - genetics
trees
Trees - drug effects
Trees - genetics
Trees - growth & development
title Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-transcriptomics%20indicates%20biotic%20cross-tolerance%20in%20willow%20trees%20cultivated%20on%20petroleum%20hydrocarbon%20contaminated%20soil&rft.jtitle=BMC%20plant%20biology&rft.au=Gonzalez,%20Emmanuel&rft.date=2015-10-12&rft.volume=15&rft.issue=1&rft.spage=246&rft.epage=246&rft.pages=246-246&rft.artnum=246&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-015-0636-9&rft_dat=%3Cgale_pubme%3EA541375802%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779717290&rft_id=info:pmid/26459343&rft_galeid=A541375802&rfr_iscdi=true