Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation
Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two cl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12534-12539 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12539 |
---|---|
container_issue | 40 |
container_start_page | 12534 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Huang, Jiyue Cheng, Zhihao Wang, Cong Hong, Yue Su, Hang Wang, Jun Copenhaver, Gregory P. Ma, Hong Wang, Yingxiang |
description | Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways. |
doi_str_mv | 10.1073/pnas.1507165112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465389</jstor_id><sourcerecordid>26465389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</originalsourceid><addsrcrecordid>eNqNkU1vEzEURS0EoqGwZgUaiU030_r5c7xBqkoLSBVsYG25k-fgaGKn9kwk_j2eJoTCipUt-byj63cJeQ30HKjmF9voyjlIqkFJAPaELIAaaJUw9ClZUMp02wkmTsiLUtaUUiM7-pycMMUNk8IsSLhJeePGkGKTfBPiiNljxthjWzCWMIYdNhsMaQx90-dUSpt2mEuT8X4KGUtTJu9DHzCOzYcvl82Abhniqi1jdnHZ4JDi6sH_kjzzbij46nCeku8319-uPrW3Xz9-vrq8bXtJYWx9ZwRX9V4zauc61XWaoWdUegSJd1Q4Rj03imnBVL_kWgNKhdBLZ3yP_JS833u3090Gl30Nlt1gtzlsXP5pkwv275cYfthV2lmhKBemq4KzgyCn-wnLaDeh9DgMLmKaigXNWQcUhPwPlFEhQerZ-u4fdJ2mHOsmZgqMAAWsUhd76mHVGf0xN1A7N27nxu2fxuvE28ffPfK_K65AcwDmyaMOmBVVySQXFXmzR9ZlTPmRQijJO8N_AarkvJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721941612</pqid></control><display><type>article</type><title>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Jiyue ; Cheng, Zhihao ; Wang, Cong ; Hong, Yue ; Su, Hang ; Wang, Jun ; Copenhaver, Gregory P. ; Ma, Hong ; Wang, Yingxiang</creator><creatorcontrib>Huang, Jiyue ; Cheng, Zhihao ; Wang, Cong ; Hong, Yue ; Su, Hang ; Wang, Jun ; Copenhaver, Gregory P. ; Ma, Hong ; Wang, Yingxiang</creatorcontrib><description>Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1507165112</identifier><identifier>PMID: 26392549</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological Sciences ; Biosynthesis ; Cell division ; Chromosome Segregation - genetics ; Chromosomes, Plant - genetics ; Crossing Over, Genetic - genetics ; Deoxyribonucleic acid ; DNA ; DNA Polymerase II - genetics ; DNA Polymerase II - metabolism ; DNA, Plant - genetics ; DNA, Plant - metabolism ; Eukaryotes ; Fertility ; Fertility - genetics ; Genetic diversity ; Genetics ; Genomes ; In Situ Hybridization, Fluorescence ; Meiosis - genetics ; Microscopy, Fluorescence ; Models, Genetic ; Mutation ; Plants, Genetically Modified ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Recombination, Genetic - genetics ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12534-12539</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</citedby><cites>FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465389$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465389$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jiyue</creatorcontrib><creatorcontrib>Cheng, Zhihao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Copenhaver, Gregory P.</creatorcontrib><creatorcontrib>Ma, Hong</creatorcontrib><creatorcontrib>Wang, Yingxiang</creatorcontrib><title>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell division</subject><subject>Chromosome Segregation - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Crossing Over, Genetic - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Polymerase II - genetics</subject><subject>DNA Polymerase II - metabolism</subject><subject>DNA, Plant - genetics</subject><subject>DNA, Plant - metabolism</subject><subject>Eukaryotes</subject><subject>Fertility</subject><subject>Fertility - genetics</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genomes</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Meiosis - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Plants, Genetically Modified</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEURS0EoqGwZgUaiU030_r5c7xBqkoLSBVsYG25k-fgaGKn9kwk_j2eJoTCipUt-byj63cJeQ30HKjmF9voyjlIqkFJAPaELIAaaJUw9ClZUMp02wkmTsiLUtaUUiM7-pycMMUNk8IsSLhJeePGkGKTfBPiiNljxthjWzCWMIYdNhsMaQx90-dUSpt2mEuT8X4KGUtTJu9DHzCOzYcvl82Abhniqi1jdnHZ4JDi6sH_kjzzbij46nCeku8319-uPrW3Xz9-vrq8bXtJYWx9ZwRX9V4zauc61XWaoWdUegSJd1Q4Rj03imnBVL_kWgNKhdBLZ3yP_JS833u3090Gl30Nlt1gtzlsXP5pkwv275cYfthV2lmhKBemq4KzgyCn-wnLaDeh9DgMLmKaigXNWQcUhPwPlFEhQerZ-u4fdJ2mHOsmZgqMAAWsUhd76mHVGf0xN1A7N27nxu2fxuvE28ffPfK_K65AcwDmyaMOmBVVySQXFXmzR9ZlTPmRQijJO8N_AarkvJ4</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Huang, Jiyue</creator><creator>Cheng, Zhihao</creator><creator>Wang, Cong</creator><creator>Hong, Yue</creator><creator>Su, Hang</creator><creator>Wang, Jun</creator><creator>Copenhaver, Gregory P.</creator><creator>Ma, Hong</creator><creator>Wang, Yingxiang</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</title><author>Huang, Jiyue ; Cheng, Zhihao ; Wang, Cong ; Hong, Yue ; Su, Hang ; Wang, Jun ; Copenhaver, Gregory P. ; Ma, Hong ; Wang, Yingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell division</topic><topic>Chromosome Segregation - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Crossing Over, Genetic - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Polymerase II - genetics</topic><topic>DNA Polymerase II - metabolism</topic><topic>DNA, Plant - genetics</topic><topic>DNA, Plant - metabolism</topic><topic>Eukaryotes</topic><topic>Fertility</topic><topic>Fertility - genetics</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genomes</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Meiosis - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Plants, Genetically Modified</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiyue</creatorcontrib><creatorcontrib>Cheng, Zhihao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Copenhaver, Gregory P.</creatorcontrib><creatorcontrib>Ma, Hong</creatorcontrib><creatorcontrib>Wang, Yingxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiyue</au><au>Cheng, Zhihao</au><au>Wang, Cong</au><au>Hong, Yue</au><au>Su, Hang</au><au>Wang, Jun</au><au>Copenhaver, Gregory P.</au><au>Ma, Hong</au><au>Wang, Yingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12534</spage><epage>12539</epage><pages>12534-12539</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26392549</pmid><doi>10.1073/pnas.1507165112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12534-12539 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603498 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological Sciences Biosynthesis Cell division Chromosome Segregation - genetics Chromosomes, Plant - genetics Crossing Over, Genetic - genetics Deoxyribonucleic acid DNA DNA Polymerase II - genetics DNA Polymerase II - metabolism DNA, Plant - genetics DNA, Plant - metabolism Eukaryotes Fertility Fertility - genetics Genetic diversity Genetics Genomes In Situ Hybridization, Fluorescence Meiosis - genetics Microscopy, Fluorescence Models, Genetic Mutation Plants, Genetically Modified Protein Subunits - genetics Protein Subunits - metabolism Recombination, Genetic - genetics Yeasts |
title | Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20interference-sensitive%20meiotic%20cross-overs%20requires%20sufficient%20DNA%20leading-strand%20elongation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huang,%20Jiyue&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12534&rft.epage=12539&rft.pages=12534-12539&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1507165112&rft_dat=%3Cjstor_pubme%3E26465389%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721941612&rft_id=info:pmid/26392549&rft_jstor_id=26465389&rfr_iscdi=true |