Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation

Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12534-12539
Hauptverfasser: Huang, Jiyue, Cheng, Zhihao, Wang, Cong, Hong, Yue, Su, Hang, Wang, Jun, Copenhaver, Gregory P., Ma, Hong, Wang, Yingxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12539
container_issue 40
container_start_page 12534
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Huang, Jiyue
Cheng, Zhihao
Wang, Cong
Hong, Yue
Su, Hang
Wang, Jun
Copenhaver, Gregory P.
Ma, Hong
Wang, Yingxiang
description Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.
doi_str_mv 10.1073/pnas.1507165112
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465389</jstor_id><sourcerecordid>26465389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</originalsourceid><addsrcrecordid>eNqNkU1vEzEURS0EoqGwZgUaiU030_r5c7xBqkoLSBVsYG25k-fgaGKn9kwk_j2eJoTCipUt-byj63cJeQ30HKjmF9voyjlIqkFJAPaELIAaaJUw9ClZUMp02wkmTsiLUtaUUiM7-pycMMUNk8IsSLhJeePGkGKTfBPiiNljxthjWzCWMIYdNhsMaQx90-dUSpt2mEuT8X4KGUtTJu9DHzCOzYcvl82Abhniqi1jdnHZ4JDi6sH_kjzzbij46nCeku8319-uPrW3Xz9-vrq8bXtJYWx9ZwRX9V4zauc61XWaoWdUegSJd1Q4Rj03imnBVL_kWgNKhdBLZ3yP_JS833u3090Gl30Nlt1gtzlsXP5pkwv275cYfthV2lmhKBemq4KzgyCn-wnLaDeh9DgMLmKaigXNWQcUhPwPlFEhQerZ-u4fdJ2mHOsmZgqMAAWsUhd76mHVGf0xN1A7N27nxu2fxuvE28ffPfK_K65AcwDmyaMOmBVVySQXFXmzR9ZlTPmRQijJO8N_AarkvJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721941612</pqid></control><display><type>article</type><title>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Huang, Jiyue ; Cheng, Zhihao ; Wang, Cong ; Hong, Yue ; Su, Hang ; Wang, Jun ; Copenhaver, Gregory P. ; Ma, Hong ; Wang, Yingxiang</creator><creatorcontrib>Huang, Jiyue ; Cheng, Zhihao ; Wang, Cong ; Hong, Yue ; Su, Hang ; Wang, Jun ; Copenhaver, Gregory P. ; Ma, Hong ; Wang, Yingxiang</creatorcontrib><description>Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1507165112</identifier><identifier>PMID: 26392549</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological Sciences ; Biosynthesis ; Cell division ; Chromosome Segregation - genetics ; Chromosomes, Plant - genetics ; Crossing Over, Genetic - genetics ; Deoxyribonucleic acid ; DNA ; DNA Polymerase II - genetics ; DNA Polymerase II - metabolism ; DNA, Plant - genetics ; DNA, Plant - metabolism ; Eukaryotes ; Fertility ; Fertility - genetics ; Genetic diversity ; Genetics ; Genomes ; In Situ Hybridization, Fluorescence ; Meiosis - genetics ; Microscopy, Fluorescence ; Models, Genetic ; Mutation ; Plants, Genetically Modified ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Recombination, Genetic - genetics ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12534-12539</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</citedby><cites>FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465389$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465389$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jiyue</creatorcontrib><creatorcontrib>Cheng, Zhihao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Copenhaver, Gregory P.</creatorcontrib><creatorcontrib>Ma, Hong</creatorcontrib><creatorcontrib>Wang, Yingxiang</creatorcontrib><title>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell division</subject><subject>Chromosome Segregation - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Crossing Over, Genetic - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Polymerase II - genetics</subject><subject>DNA Polymerase II - metabolism</subject><subject>DNA, Plant - genetics</subject><subject>DNA, Plant - metabolism</subject><subject>Eukaryotes</subject><subject>Fertility</subject><subject>Fertility - genetics</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genomes</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Meiosis - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Plants, Genetically Modified</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEURS0EoqGwZgUaiU030_r5c7xBqkoLSBVsYG25k-fgaGKn9kwk_j2eJoTCipUt-byj63cJeQ30HKjmF9voyjlIqkFJAPaELIAaaJUw9ClZUMp02wkmTsiLUtaUUiM7-pycMMUNk8IsSLhJeePGkGKTfBPiiNljxthjWzCWMIYdNhsMaQx90-dUSpt2mEuT8X4KGUtTJu9DHzCOzYcvl82Abhniqi1jdnHZ4JDi6sH_kjzzbij46nCeku8319-uPrW3Xz9-vrq8bXtJYWx9ZwRX9V4zauc61XWaoWdUegSJd1Q4Rj03imnBVL_kWgNKhdBLZ3yP_JS833u3090Gl30Nlt1gtzlsXP5pkwv275cYfthV2lmhKBemq4KzgyCn-wnLaDeh9DgMLmKaigXNWQcUhPwPlFEhQerZ-u4fdJ2mHOsmZgqMAAWsUhd76mHVGf0xN1A7N27nxu2fxuvE28ffPfK_K65AcwDmyaMOmBVVySQXFXmzR9ZlTPmRQijJO8N_AarkvJ4</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Huang, Jiyue</creator><creator>Cheng, Zhihao</creator><creator>Wang, Cong</creator><creator>Hong, Yue</creator><creator>Su, Hang</creator><creator>Wang, Jun</creator><creator>Copenhaver, Gregory P.</creator><creator>Ma, Hong</creator><creator>Wang, Yingxiang</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</title><author>Huang, Jiyue ; Cheng, Zhihao ; Wang, Cong ; Hong, Yue ; Su, Hang ; Wang, Jun ; Copenhaver, Gregory P. ; Ma, Hong ; Wang, Yingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f89436c502637aa868872ef205fe15eb04a20f39627426cd3771e56e1c5a9fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell division</topic><topic>Chromosome Segregation - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Crossing Over, Genetic - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Polymerase II - genetics</topic><topic>DNA Polymerase II - metabolism</topic><topic>DNA, Plant - genetics</topic><topic>DNA, Plant - metabolism</topic><topic>Eukaryotes</topic><topic>Fertility</topic><topic>Fertility - genetics</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genomes</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Meiosis - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Plants, Genetically Modified</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiyue</creatorcontrib><creatorcontrib>Cheng, Zhihao</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Copenhaver, Gregory P.</creatorcontrib><creatorcontrib>Ma, Hong</creatorcontrib><creatorcontrib>Wang, Yingxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiyue</au><au>Cheng, Zhihao</au><au>Wang, Cong</au><au>Hong, Yue</au><au>Su, Hang</au><au>Wang, Jun</au><au>Copenhaver, Gregory P.</au><au>Ma, Hong</au><au>Wang, Yingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12534</spage><epage>12539</epage><pages>12534-12539</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show thatArabidopsis POL2A, the homolog of the yeastDNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations inPOL2Acause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests thatpol2amutants likely delay progression of meiotic recombination. In addition, the residual COs inpol2ahave reduced CO interference, and the double mutant ofpol2awithmus81, which affects type II COs, displayed more severe defects than either single mutant, indicating thatPOL2Afunctions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26392549</pmid><doi>10.1073/pnas.1507165112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12534-12539
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603498
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological Sciences
Biosynthesis
Cell division
Chromosome Segregation - genetics
Chromosomes, Plant - genetics
Crossing Over, Genetic - genetics
Deoxyribonucleic acid
DNA
DNA Polymerase II - genetics
DNA Polymerase II - metabolism
DNA, Plant - genetics
DNA, Plant - metabolism
Eukaryotes
Fertility
Fertility - genetics
Genetic diversity
Genetics
Genomes
In Situ Hybridization, Fluorescence
Meiosis - genetics
Microscopy, Fluorescence
Models, Genetic
Mutation
Plants, Genetically Modified
Protein Subunits - genetics
Protein Subunits - metabolism
Recombination, Genetic - genetics
Yeasts
title Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20interference-sensitive%20meiotic%20cross-overs%20requires%20sufficient%20DNA%20leading-strand%20elongation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Huang,%20Jiyue&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12534&rft.epage=12539&rft.pages=12534-12539&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1507165112&rft_dat=%3Cjstor_pubme%3E26465389%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721941612&rft_id=info:pmid/26392549&rft_jstor_id=26465389&rfr_iscdi=true