Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials

Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (40), p.12321-12326
Hauptverfasser: Filipov, Evgueni T., Tachi, Tomohiro, Paulino, Glaucio H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12326
container_issue 40
container_start_page 12321
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Filipov, Evgueni T.
Tachi, Tomohiro
Paulino, Glaucio H.
description Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.
doi_str_mv 10.1073/pnas.1509465112
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465353</jstor_id><sourcerecordid>26465353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-b0f9b8d422d962f3e0ecdb1d1cdea3a029294c3e6a1ab7ea34cf0701b0ab81ed3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAkUiUsPpJ2xHSe-VEJV-ZAq9QCcLceZLF7lY7EdpP73ONplKZxGmvm9NzN6jL1GuESoxdV-svESK9BSVYj8CdsgaCyV1PCUbQB4XTaSyzP2IsYdAOiqgefsjCtRodJiw77eB7-1oy_S0lIsbIw0tgN1hZ_SXMTk-_598UCpCOTmqffbJdg8z5OwuLSEVTN1xUjJjjZR8HaIL9mzPhd6dazn7PvH2283n8u7-09fbj7clU6qJpUt9LptOsl5pxXvBQG5rsUOXUdWWOCaa-kEKYu2rXNLuh5qwBZs2yB14pxdH3z3SztS52hKwQ5mH_xow4OZrTf_Tib_w2znX0YqEPmEbHBxNAjzz4ViMqOPjobBTjQv0WDNQVYolcrou__Q3byEKb-3UqglQoWZujpQLswxBupPxyCYNTCzBmb-BpYVbx__cOL_JJSB4gisypMdciOzJRd83frmgOximsMji7xDVEL8BvhRqAI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721941051</pqid></control><display><type>article</type><title>Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Filipov, Evgueni T. ; Tachi, Tomohiro ; Paulino, Glaucio H.</creator><creatorcontrib>Filipov, Evgueni T. ; Tachi, Tomohiro ; Paulino, Glaucio H.</creatorcontrib><description>Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1509465112</identifier><identifier>PMID: 26351693</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Band gap ; Deformation ; Eigenvalues ; Mechanical properties ; Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12321-12326</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-b0f9b8d422d962f3e0ecdb1d1cdea3a029294c3e6a1ab7ea34cf0701b0ab81ed3</citedby><cites>FETCH-LOGICAL-c468t-b0f9b8d422d962f3e0ecdb1d1cdea3a029294c3e6a1ab7ea34cf0701b0ab81ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465353$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465353$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26351693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipov, Evgueni T.</creatorcontrib><creatorcontrib>Tachi, Tomohiro</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><title>Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.</description><subject>Band gap</subject><subject>Deformation</subject><subject>Eigenvalues</subject><subject>Mechanical properties</subject><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAkUiUsPpJ2xHSe-VEJV-ZAq9QCcLceZLF7lY7EdpP73ONplKZxGmvm9NzN6jL1GuESoxdV-svESK9BSVYj8CdsgaCyV1PCUbQB4XTaSyzP2IsYdAOiqgefsjCtRodJiw77eB7-1oy_S0lIsbIw0tgN1hZ_SXMTk-_598UCpCOTmqffbJdg8z5OwuLSEVTN1xUjJjjZR8HaIL9mzPhd6dazn7PvH2283n8u7-09fbj7clU6qJpUt9LptOsl5pxXvBQG5rsUOXUdWWOCaa-kEKYu2rXNLuh5qwBZs2yB14pxdH3z3SztS52hKwQ5mH_xow4OZrTf_Tib_w2znX0YqEPmEbHBxNAjzz4ViMqOPjobBTjQv0WDNQVYolcrou__Q3byEKb-3UqglQoWZujpQLswxBupPxyCYNTCzBmb-BpYVbx__cOL_JJSB4gisypMdciOzJRd83frmgOximsMji7xDVEL8BvhRqAI</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Filipov, Evgueni T.</creator><creator>Tachi, Tomohiro</creator><creator>Paulino, Glaucio H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151006</creationdate><title>Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials</title><author>Filipov, Evgueni T. ; Tachi, Tomohiro ; Paulino, Glaucio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-b0f9b8d422d962f3e0ecdb1d1cdea3a029294c3e6a1ab7ea34cf0701b0ab81ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Band gap</topic><topic>Deformation</topic><topic>Eigenvalues</topic><topic>Mechanical properties</topic><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipov, Evgueni T.</creatorcontrib><creatorcontrib>Tachi, Tomohiro</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipov, Evgueni T.</au><au>Tachi, Tomohiro</au><au>Paulino, Glaucio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>112</volume><issue>40</issue><spage>12321</spage><epage>12326</epage><pages>12321-12326</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26351693</pmid><doi>10.1073/pnas.1509465112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (40), p.12321-12326
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4603468
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Band gap
Deformation
Eigenvalues
Mechanical properties
Physical Sciences
title Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origami%20tubes%20assembled%20into%20stiff,%20yet%20reconfigurable%20structures%20and%20metamaterials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Filipov,%20Evgueni%20T.&rft.date=2015-10-06&rft.volume=112&rft.issue=40&rft.spage=12321&rft.epage=12326&rft.pages=12321-12326&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1509465112&rft_dat=%3Cjstor_pubme%3E26465353%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721941051&rft_id=info:pmid/26351693&rft_jstor_id=26465353&rfr_iscdi=true