Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons
The formation of oscillating phase clusters in a network of identical Hodgkin–Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a networ...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical neuroscience 2015-12, Vol.5 (1), p.2-2, Article 2 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2 |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | Journal of mathematical neuroscience |
container_volume | 5 |
creator | Moon, Sung Joon Cook, Katherine A Rajendran, Karthikeyan Kevrekidis, Ioannis G Cisternas, Jaime Laing, Carlo R |
description | The formation of oscillating phase clusters in a network of identical Hodgkin–Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of
N
neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition—through
(possibly perturbed) period-doubling and subsequent bifurcations—to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar “fine” states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron’s “identity” (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established “identity-state” correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics. |
doi_str_mv | 10.1186/2190-8567-5-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4602023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722187978</sourcerecordid><originalsourceid>FETCH-LOGICAL-b571t-eecf2460d586ef98b27d85e450d7a22f28260d44c3393c5c88bc08e920b61ee43</originalsourceid><addsrcrecordid>eNqNks1v1DAQxS1ERau2R64ogguXtPYkdpwLogr9QKrgAmfLcSZbV4m92AnS_vd4m7LaApXwxR7PT--NnoaQ14yeMSbFObCa5pKLKuc5vCBHu_rl3vuQnMZ4T9PhTBQAr8ghiJLLmrIjctl4HSLm10Fbh13WDHOcMFi3yj5tnB6tiZnvsxtMn36FDv0ch03W-Hk9JPwLzsG7eEIOej1EPH28j8n3q8tvzU1--_X6c3Nxm7e8YlOOaHooBe24FNjXsoWqkxxLTrtKA_QgITXL0hRFXRhupGwNlVgDbQVDLItj8mHRXc_tiJ1BNwU9qHWwow4b5bVVTzvO3qmV_6mSKVAoksDbRcDHyapo7ITmznjn0EyKCRCipgn6uECt9c-4PO0YP6pt3Gobt-IKksT7x0GD_zFjnNRoo8Fh0A8JKlZxBlBTXv0HCsBkVVcyoe_-QO_9HFxKXDFJZVnwpJuofKFM8DEG7HeTM6q2a_PXrG_2Q93Rv5ckAWcLENfbxcCwZ_tPxV9dTMs6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808435175</pqid></control><display><type>article</type><title>Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Moon, Sung Joon ; Cook, Katherine A ; Rajendran, Karthikeyan ; Kevrekidis, Ioannis G ; Cisternas, Jaime ; Laing, Carlo R</creator><creatorcontrib>Moon, Sung Joon ; Cook, Katherine A ; Rajendran, Karthikeyan ; Kevrekidis, Ioannis G ; Cisternas, Jaime ; Laing, Carlo R ; Princeton Univ., NJ (United States) Dept. of Chemical and Biological Engineering and Program in Applied and Computational Mathematics</creatorcontrib><description>The formation of oscillating phase clusters in a network of identical Hodgkin–Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of
N
neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition—through
(possibly perturbed) period-doubling and subsequent bifurcations—to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar “fine” states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron’s “identity” (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established “identity-state” correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.</description><identifier>ISSN: 2190-8567</identifier><identifier>EISSN: 2190-8567</identifier><identifier>DOI: 10.1186/2190-8567-5-2</identifier><identifier>PMID: 26458901</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; clustering dynamics ; heterogeneous coupling ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; MATHEMATICS AND COMPUTING ; Mathematics and Statistics ; Neurosciences ; polynomial chaos expansion</subject><ispartof>Journal of mathematical neuroscience, 2015-12, Vol.5 (1), p.2-2, Article 2</ispartof><rights>S.J. Moon et al.; licensee Springer 2015. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>The Author(s) 2015</rights><rights>S.J. Moon et al.; licensee Springer 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b571t-eecf2460d586ef98b27d85e450d7a22f28260d44c3393c5c88bc08e920b61ee43</citedby><cites>FETCH-LOGICAL-b571t-eecf2460d586ef98b27d85e450d7a22f28260d44c3393c5c88bc08e920b61ee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26458901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1626690$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Sung Joon</creatorcontrib><creatorcontrib>Cook, Katherine A</creatorcontrib><creatorcontrib>Rajendran, Karthikeyan</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><creatorcontrib>Cisternas, Jaime</creatorcontrib><creatorcontrib>Laing, Carlo R</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States) Dept. of Chemical and Biological Engineering and Program in Applied and Computational Mathematics</creatorcontrib><title>Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons</title><title>Journal of mathematical neuroscience</title><addtitle>J. Math. Neurosc</addtitle><addtitle>J Math Neurosci</addtitle><description>The formation of oscillating phase clusters in a network of identical Hodgkin–Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of
N
neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition—through
(possibly perturbed) period-doubling and subsequent bifurcations—to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar “fine” states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron’s “identity” (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established “identity-state” correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.</description><subject>Applications of Mathematics</subject><subject>clustering dynamics</subject><subject>heterogeneous coupling</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Mathematics and Statistics</subject><subject>Neurosciences</subject><subject>polynomial chaos expansion</subject><issn>2190-8567</issn><issn>2190-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1v1DAQxS1ERau2R64ogguXtPYkdpwLogr9QKrgAmfLcSZbV4m92AnS_vd4m7LaApXwxR7PT--NnoaQ14yeMSbFObCa5pKLKuc5vCBHu_rl3vuQnMZ4T9PhTBQAr8ghiJLLmrIjctl4HSLm10Fbh13WDHOcMFi3yj5tnB6tiZnvsxtMn36FDv0ch03W-Hk9JPwLzsG7eEIOej1EPH28j8n3q8tvzU1--_X6c3Nxm7e8YlOOaHooBe24FNjXsoWqkxxLTrtKA_QgITXL0hRFXRhupGwNlVgDbQVDLItj8mHRXc_tiJ1BNwU9qHWwow4b5bVVTzvO3qmV_6mSKVAoksDbRcDHyapo7ITmznjn0EyKCRCipgn6uECt9c-4PO0YP6pt3Gobt-IKksT7x0GD_zFjnNRoo8Fh0A8JKlZxBlBTXv0HCsBkVVcyoe_-QO_9HFxKXDFJZVnwpJuofKFM8DEG7HeTM6q2a_PXrG_2Q93Rv5ckAWcLENfbxcCwZ_tPxV9dTMs6</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Moon, Sung Joon</creator><creator>Cook, Katherine A</creator><creator>Rajendran, Karthikeyan</creator><creator>Kevrekidis, Ioannis G</creator><creator>Cisternas, Jaime</creator><creator>Laing, Carlo R</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TK</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons</title><author>Moon, Sung Joon ; Cook, Katherine A ; Rajendran, Karthikeyan ; Kevrekidis, Ioannis G ; Cisternas, Jaime ; Laing, Carlo R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b571t-eecf2460d586ef98b27d85e450d7a22f28260d44c3393c5c88bc08e920b61ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>clustering dynamics</topic><topic>heterogeneous coupling</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Mathematics and Statistics</topic><topic>Neurosciences</topic><topic>polynomial chaos expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Moon, Sung Joon</creatorcontrib><creatorcontrib>Cook, Katherine A</creatorcontrib><creatorcontrib>Rajendran, Karthikeyan</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G</creatorcontrib><creatorcontrib>Cisternas, Jaime</creatorcontrib><creatorcontrib>Laing, Carlo R</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States) Dept. of Chemical and Biological Engineering and Program in Applied and Computational Mathematics</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Sung Joon</au><au>Cook, Katherine A</au><au>Rajendran, Karthikeyan</au><au>Kevrekidis, Ioannis G</au><au>Cisternas, Jaime</au><au>Laing, Carlo R</au><aucorp>Princeton Univ., NJ (United States) Dept. of Chemical and Biological Engineering and Program in Applied and Computational Mathematics</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons</atitle><jtitle>Journal of mathematical neuroscience</jtitle><stitle>J. Math. Neurosc</stitle><addtitle>J Math Neurosci</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>2</spage><epage>2</epage><pages>2-2</pages><artnum>2</artnum><issn>2190-8567</issn><eissn>2190-8567</eissn><abstract>The formation of oscillating phase clusters in a network of identical Hodgkin–Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of
N
neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition—through
(possibly perturbed) period-doubling and subsequent bifurcations—to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar “fine” states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron’s “identity” (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established “identity-state” correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26458901</pmid><doi>10.1186/2190-8567-5-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-8567 |
ispartof | Journal of mathematical neuroscience, 2015-12, Vol.5 (1), p.2-2, Article 2 |
issn | 2190-8567 2190-8567 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4602023 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Applications of Mathematics clustering dynamics heterogeneous coupling Mathematical Modeling and Industrial Mathematics Mathematics MATHEMATICS AND COMPUTING Mathematics and Statistics Neurosciences polynomial chaos expansion |
title | Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-Grained%20Clustering%20Dynamics%20of%20Heterogeneously%20Coupled%20Neurons&rft.jtitle=Journal%20of%20mathematical%20neuroscience&rft.au=Moon,%20Sung%20Joon&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)%20Dept.%20of%20Chemical%20and%20Biological%20Engineering%20and%20Program%20in%20Applied%20and%20Computational%20Mathematics&rft.date=2015-12-01&rft.volume=5&rft.issue=1&rft.spage=2&rft.epage=2&rft.pages=2-2&rft.artnum=2&rft.issn=2190-8567&rft.eissn=2190-8567&rft_id=info:doi/10.1186/2190-8567-5-2&rft_dat=%3Cproquest_pubme%3E1722187978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808435175&rft_id=info:pmid/26458901&rfr_iscdi=true |