Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells
Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties...
Gespeichert in:
Veröffentlicht in: | International journal of molecular medicine 2015-11, Vol.36 (5), p.1223-1232 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 5 |
container_start_page | 1223 |
container_title | International journal of molecular medicine |
container_volume | 36 |
creator | LU, YAO LI, SU WU, HENGFANG BIAN, ZHIPING XU, JINDAN GU, CHUNRONG CHEN, XIANGJIAN YANG, DI |
description | Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and mitochondrial biogenesis. These data demonstrate the antioxidant properties of As-IV. |
doi_str_mv | 10.3892/ijmm.2015.2345 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4601744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A439212807</galeid><sourcerecordid>A439212807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-f5586e87e7bbc6951b37914c809ea3a963ba3aa9d1599431a6465bd357684b2e3</originalsourceid><addsrcrecordid>eNptksuLFDEQxhtR3HX16lECXrz0mHc6F2FdfAwseFHxFtJJ9UyG7mRMuhf27D9uml1HhSWHyuNXH1-lqmleErxhnaZvw2GaNhQTsaGMi0fNOVGatJTzH4_rnmDVMiXkWfOslAPGVHDdPW3OqGS6E1ydN7_eQ4QhuGBHBMMAbi4oDciWOdudHVMJHtD2O6qHEMuMbNyFNEMsIaLttg3RLw48msKc3D5Fn1chf1uGJbo5pIgql-2Mbmxxy2gzKlNK8x5NS3EjIAfjWJ43TwY7FnhxHy-abx8_fL363F5_-bS9urxunej43A5CdBI6BarvndSC9KzWyl2HNVhmtWR9DVZ7IrTmjFjJpeg9E0p2vKfALpp3d7rHpZ_AO4i1yNEcc5hsvjXJBvP_Swx7s0s3hktMFOdV4PW9QE4_FyizOaQlx-rZEM3WBiil_1L1_8CEOKQq5qZQnLnkTFNCO6wqtXmAqsvDFFxam1LvH0pwOZWSYTgZJ9iss2DWWTDrLJjVSk149W-5J_xP8yvw5g4oRxt98KmcmFWqZbLFoiWUMvYbDe2_ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932345779</pqid></control><display><type>article</type><title>Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>LU, YAO ; LI, SU ; WU, HENGFANG ; BIAN, ZHIPING ; XU, JINDAN ; GU, CHUNRONG ; CHEN, XIANGJIAN ; YANG, DI</creator><creatorcontrib>LU, YAO ; LI, SU ; WU, HENGFANG ; BIAN, ZHIPING ; XU, JINDAN ; GU, CHUNRONG ; CHEN, XIANGJIAN ; YANG, DI</creatorcontrib><description>Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and mitochondrial biogenesis. These data demonstrate the antioxidant properties of As-IV.</description><identifier>ISSN: 1107-3756</identifier><identifier>EISSN: 1791-244X</identifier><identifier>DOI: 10.3892/ijmm.2015.2345</identifier><identifier>PMID: 26398547</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Angiotensin ; Angiotensin II - adverse effects ; Animals ; Antioxidants ; Antioxidants - metabolism ; Apoptosis ; astragaloside IV ; Autophagy ; Bioenergetics ; Biosynthesis ; Cell culture ; Cells, Cultured ; Chromatography ; DNA, Mitochondrial - metabolism ; Dosage and administration ; Ethics ; Male ; Medical research ; Membrane Potential, Mitochondrial - drug effects ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Diseases - chemically induced ; Mitochondrial Diseases - drug therapy ; Mitochondrial Diseases - metabolism ; Mitochondrial DNA ; mitochondrial dysfunction ; Morphology ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - metabolism ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - metabolism ; NADPH Oxidases - metabolism ; Oxidation-Reduction - drug effects ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Physiology ; Protein expression ; Proteins ; Rats ; Rats, Sprague-Dawley ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents ; ROS ; Saponins - pharmacology ; Signal Transduction - drug effects ; Smooth muscle ; smooth muscle cells ; Transcription Factors - metabolism ; Triterpenes - pharmacology</subject><ispartof>International journal of molecular medicine, 2015-11, Vol.36 (5), p.1223-1232</ispartof><rights>Copyright: © Lu et al.</rights><rights>COPYRIGHT 2015 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2015</rights><rights>Copyright: © Lu et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-f5586e87e7bbc6951b37914c809ea3a963ba3aa9d1599431a6465bd357684b2e3</citedby><cites>FETCH-LOGICAL-c584t-f5586e87e7bbc6951b37914c809ea3a963ba3aa9d1599431a6465bd357684b2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,5556,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26398547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LU, YAO</creatorcontrib><creatorcontrib>LI, SU</creatorcontrib><creatorcontrib>WU, HENGFANG</creatorcontrib><creatorcontrib>BIAN, ZHIPING</creatorcontrib><creatorcontrib>XU, JINDAN</creatorcontrib><creatorcontrib>GU, CHUNRONG</creatorcontrib><creatorcontrib>CHEN, XIANGJIAN</creatorcontrib><creatorcontrib>YANG, DI</creatorcontrib><title>Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells</title><title>International journal of molecular medicine</title><addtitle>Int J Mol Med</addtitle><description>Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and mitochondrial biogenesis. These data demonstrate the antioxidant properties of As-IV.</description><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Angiotensin</subject><subject>Angiotensin II - adverse effects</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>astragaloside IV</subject><subject>Autophagy</subject><subject>Bioenergetics</subject><subject>Biosynthesis</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Chromatography</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Dosage and administration</subject><subject>Ethics</subject><subject>Male</subject><subject>Medical research</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Diseases - chemically induced</subject><subject>Mitochondrial Diseases - drug therapy</subject><subject>Mitochondrial Diseases - metabolism</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial dysfunction</subject><subject>Morphology</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>NADPH Oxidases - metabolism</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Physiology</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>ROS</subject><subject>Saponins - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Smooth muscle</subject><subject>smooth muscle cells</subject><subject>Transcription Factors - metabolism</subject><subject>Triterpenes - pharmacology</subject><issn>1107-3756</issn><issn>1791-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptksuLFDEQxhtR3HX16lECXrz0mHc6F2FdfAwseFHxFtJJ9UyG7mRMuhf27D9uml1HhSWHyuNXH1-lqmleErxhnaZvw2GaNhQTsaGMi0fNOVGatJTzH4_rnmDVMiXkWfOslAPGVHDdPW3OqGS6E1ydN7_eQ4QhuGBHBMMAbi4oDciWOdudHVMJHtD2O6qHEMuMbNyFNEMsIaLttg3RLw48msKc3D5Fn1chf1uGJbo5pIgql-2Mbmxxy2gzKlNK8x5NS3EjIAfjWJ43TwY7FnhxHy-abx8_fL363F5_-bS9urxunej43A5CdBI6BarvndSC9KzWyl2HNVhmtWR9DVZ7IrTmjFjJpeg9E0p2vKfALpp3d7rHpZ_AO4i1yNEcc5hsvjXJBvP_Swx7s0s3hktMFOdV4PW9QE4_FyizOaQlx-rZEM3WBiil_1L1_8CEOKQq5qZQnLnkTFNCO6wqtXmAqsvDFFxam1LvH0pwOZWSYTgZJ9iss2DWWTDrLJjVSk149W-5J_xP8yvw5g4oRxt98KmcmFWqZbLFoiWUMvYbDe2_ag</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>LU, YAO</creator><creator>LI, SU</creator><creator>WU, HENGFANG</creator><creator>BIAN, ZHIPING</creator><creator>XU, JINDAN</creator><creator>GU, CHUNRONG</creator><creator>CHEN, XIANGJIAN</creator><creator>YANG, DI</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20151101</creationdate><title>Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells</title><author>LU, YAO ; LI, SU ; WU, HENGFANG ; BIAN, ZHIPING ; XU, JINDAN ; GU, CHUNRONG ; CHEN, XIANGJIAN ; YANG, DI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-f5586e87e7bbc6951b37914c809ea3a963ba3aa9d1599431a6465bd357684b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Angiotensin</topic><topic>Angiotensin II - adverse effects</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>astragaloside IV</topic><topic>Autophagy</topic><topic>Bioenergetics</topic><topic>Biosynthesis</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Chromatography</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Dosage and administration</topic><topic>Ethics</topic><topic>Male</topic><topic>Medical research</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Diseases - chemically induced</topic><topic>Mitochondrial Diseases - drug therapy</topic><topic>Mitochondrial Diseases - metabolism</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial dysfunction</topic><topic>Morphology</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>NADPH Oxidases - metabolism</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Physiology</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>ROS</topic><topic>Saponins - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Smooth muscle</topic><topic>smooth muscle cells</topic><topic>Transcription Factors - metabolism</topic><topic>Triterpenes - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LU, YAO</creatorcontrib><creatorcontrib>LI, SU</creatorcontrib><creatorcontrib>WU, HENGFANG</creatorcontrib><creatorcontrib>BIAN, ZHIPING</creatorcontrib><creatorcontrib>XU, JINDAN</creatorcontrib><creatorcontrib>GU, CHUNRONG</creatorcontrib><creatorcontrib>CHEN, XIANGJIAN</creatorcontrib><creatorcontrib>YANG, DI</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LU, YAO</au><au>LI, SU</au><au>WU, HENGFANG</au><au>BIAN, ZHIPING</au><au>XU, JINDAN</au><au>GU, CHUNRONG</au><au>CHEN, XIANGJIAN</au><au>YANG, DI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells</atitle><jtitle>International journal of molecular medicine</jtitle><addtitle>Int J Mol Med</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>36</volume><issue>5</issue><spage>1223</spage><epage>1232</epage><pages>1223-1232</pages><issn>1107-3756</issn><eissn>1791-244X</eissn><abstract>Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and mitochondrial biogenesis. These data demonstrate the antioxidant properties of As-IV.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>26398547</pmid><doi>10.3892/ijmm.2015.2345</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1107-3756 |
ispartof | International journal of molecular medicine, 2015-11, Vol.36 (5), p.1223-1232 |
issn | 1107-3756 1791-244X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4601744 |
source | Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adenosine triphosphate Adenosine Triphosphate - metabolism Angiotensin Angiotensin II - adverse effects Animals Antioxidants Antioxidants - metabolism Apoptosis astragaloside IV Autophagy Bioenergetics Biosynthesis Cell culture Cells, Cultured Chromatography DNA, Mitochondrial - metabolism Dosage and administration Ethics Male Medical research Membrane Potential, Mitochondrial - drug effects Metabolism Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial Diseases - chemically induced Mitochondrial Diseases - drug therapy Mitochondrial Diseases - metabolism Mitochondrial DNA mitochondrial dysfunction Morphology Muscle, Smooth, Vascular - drug effects Muscle, Smooth, Vascular - metabolism Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - metabolism NADPH Oxidases - metabolism Oxidation-Reduction - drug effects Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Physiology Protein expression Proteins Rats Rats, Sprague-Dawley Reactive oxygen species Reactive Oxygen Species - metabolism Rodents ROS Saponins - pharmacology Signal Transduction - drug effects Smooth muscle smooth muscle cells Transcription Factors - metabolism Triterpenes - pharmacology |
title | Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beneficial%20effects%20of%20astragaloside%20IV%20against%20angiotensin%20II-induced%20mitochondrial%20dysfunction%20in%20rat%20vascular%20smooth%20muscle%20cells&rft.jtitle=International%20journal%20of%20molecular%20medicine&rft.au=LU,%20YAO&rft.date=2015-11-01&rft.volume=36&rft.issue=5&rft.spage=1223&rft.epage=1232&rft.pages=1223-1232&rft.issn=1107-3756&rft.eissn=1791-244X&rft_id=info:doi/10.3892/ijmm.2015.2345&rft_dat=%3Cgale_pubme%3EA439212807%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932345779&rft_id=info:pmid/26398547&rft_galeid=A439212807&rfr_iscdi=true |