An Accurate In Vitro Model of the E. coli Envelope
Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting ant...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2015-10, Vol.54 (41), p.11952-11955 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11955 |
---|---|
container_issue | 41 |
container_start_page | 11952 |
container_title | Angewandte Chemie International Edition |
container_volume | 54 |
creator | Clifton, Luke A. Holt, Stephen A. Hughes, Arwel V. Daulton, Emma L. Arunmanee, Wanatchaporn Heinrich, Frank Khalid, Syma Jefferies, Damien Charlton, Timothy R. Webster, John R. P. Kinane, Christian J. Lakey, Jeremy H. |
description | Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.
Understanding the outer membranes of Gram‐negative bacteria is important for the development of new antibacterial compounds. However, their structure and dynamics are poorly understood because of their small in vivo size and inaccurate in vitro models. A stable asymmetric model of the outer membrane that can be analyzed by a range of biophysical techniques and accurately imitates the in vivo behavior of natural outer membranes is presented herein. |
doi_str_mv | 10.1002/anie.201504287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4600229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718328940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5857-b8a2e12d5ffb34f3c1c066e91727c5e25d457b1d6f822ec23394966fb7dbc8553</originalsourceid><addsrcrecordid>eNqFkEtPGzEURq0KVGjaLUs0SzYT_Bg_ZoOUhhQShXTT187yeO4Ul8k42BMgOzb8UX4JgxKidMXKV_L5zrU_hI4I7hOM6alpHPQpJhxnVMkP6JBwSlImJdvr5oyxVCpODtCnGP91vFJYfEQHVDBGaE4PUTZokoG1y2BaSMZN8su1wSdXvoQ68VXSXkMy6j8_Pllfu2TU3EHtF_AZ7VemjvBlc_bQz2-jH8PLdPr9YjwcTFPLFZdpoQwFQkteVQXLKmaJxUJATiSVlgPlZcZlQUpRKUrBUsbyLBeiKmRZWMU566GztXexLOZQWmjaYGq9CG5uwkp74_T_N4271n_9nc5E91ead4KTjSD42yXEVs9dtFDXpgG_jJpIohhVeYY7tL9GbfAxBqi2awjWr1Xr16r1tuoucLz7uC3-1m0H5Gvg3tWwekenB7PxaFeerrMutvCwzZpwo4Vkkuvfswv9VU4mM3k-1H_YCyC1mao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718328940</pqid></control><display><type>article</type><title>An Accurate In Vitro Model of the E. coli Envelope</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Clifton, Luke A. ; Holt, Stephen A. ; Hughes, Arwel V. ; Daulton, Emma L. ; Arunmanee, Wanatchaporn ; Heinrich, Frank ; Khalid, Syma ; Jefferies, Damien ; Charlton, Timothy R. ; Webster, John R. P. ; Kinane, Christian J. ; Lakey, Jeremy H.</creator><creatorcontrib>Clifton, Luke A. ; Holt, Stephen A. ; Hughes, Arwel V. ; Daulton, Emma L. ; Arunmanee, Wanatchaporn ; Heinrich, Frank ; Khalid, Syma ; Jefferies, Damien ; Charlton, Timothy R. ; Webster, John R. P. ; Kinane, Christian J. ; Lakey, Jeremy H.</creatorcontrib><description>Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.
Understanding the outer membranes of Gram‐negative bacteria is important for the development of new antibacterial compounds. However, their structure and dynamics are poorly understood because of their small in vivo size and inaccurate in vitro models. A stable asymmetric model of the outer membrane that can be analyzed by a range of biophysical techniques and accurately imitates the in vivo behavior of natural outer membranes is presented herein.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201504287</identifier><identifier>PMID: 26331292</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Anti-Bacterial Agents - pharmacology ; antibiotics ; Bacterial Outer Membrane Proteins - chemistry ; Communications ; Drug Discovery ; Drug Resistance, Bacterial ; Escherichia coli - chemistry ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Escherichia coli Infections - drug therapy ; Escherichia coli Infections - microbiology ; Escherichia coli Proteins - chemistry ; Gram-negative bacteria ; Humans ; Lipid Bilayers - chemistry ; membranes ; Membranes, Artificial ; Models, Molecular ; Phospholipids - chemistry ; structure-activity relationships</subject><ispartof>Angewandte Chemie International Edition, 2015-10, Vol.54 (41), p.11952-11955</ispartof><rights>2015 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5857-b8a2e12d5ffb34f3c1c066e91727c5e25d457b1d6f822ec23394966fb7dbc8553</citedby><cites>FETCH-LOGICAL-c5857-b8a2e12d5ffb34f3c1c066e91727c5e25d457b1d6f822ec23394966fb7dbc8553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201504287$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201504287$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26331292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clifton, Luke A.</creatorcontrib><creatorcontrib>Holt, Stephen A.</creatorcontrib><creatorcontrib>Hughes, Arwel V.</creatorcontrib><creatorcontrib>Daulton, Emma L.</creatorcontrib><creatorcontrib>Arunmanee, Wanatchaporn</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Khalid, Syma</creatorcontrib><creatorcontrib>Jefferies, Damien</creatorcontrib><creatorcontrib>Charlton, Timothy R.</creatorcontrib><creatorcontrib>Webster, John R. P.</creatorcontrib><creatorcontrib>Kinane, Christian J.</creatorcontrib><creatorcontrib>Lakey, Jeremy H.</creatorcontrib><title>An Accurate In Vitro Model of the E. coli Envelope</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.
Understanding the outer membranes of Gram‐negative bacteria is important for the development of new antibacterial compounds. However, their structure and dynamics are poorly understood because of their small in vivo size and inaccurate in vitro models. A stable asymmetric model of the outer membrane that can be analyzed by a range of biophysical techniques and accurately imitates the in vivo behavior of natural outer membranes is presented herein.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibiotics</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Communications</subject><subject>Drug Discovery</subject><subject>Drug Resistance, Bacterial</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli Infections - drug therapy</subject><subject>Escherichia coli Infections - microbiology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Gram-negative bacteria</subject><subject>Humans</subject><subject>Lipid Bilayers - chemistry</subject><subject>membranes</subject><subject>Membranes, Artificial</subject><subject>Models, Molecular</subject><subject>Phospholipids - chemistry</subject><subject>structure-activity relationships</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkEtPGzEURq0KVGjaLUs0SzYT_Bg_ZoOUhhQShXTT187yeO4Ul8k42BMgOzb8UX4JgxKidMXKV_L5zrU_hI4I7hOM6alpHPQpJhxnVMkP6JBwSlImJdvr5oyxVCpODtCnGP91vFJYfEQHVDBGaE4PUTZokoG1y2BaSMZN8su1wSdXvoQ68VXSXkMy6j8_Pllfu2TU3EHtF_AZ7VemjvBlc_bQz2-jH8PLdPr9YjwcTFPLFZdpoQwFQkteVQXLKmaJxUJATiSVlgPlZcZlQUpRKUrBUsbyLBeiKmRZWMU566GztXexLOZQWmjaYGq9CG5uwkp74_T_N4271n_9nc5E91ead4KTjSD42yXEVs9dtFDXpgG_jJpIohhVeYY7tL9GbfAxBqi2awjWr1Xr16r1tuoucLz7uC3-1m0H5Gvg3tWwekenB7PxaFeerrMutvCwzZpwo4Vkkuvfswv9VU4mM3k-1H_YCyC1mao</recordid><startdate>20151005</startdate><enddate>20151005</enddate><creator>Clifton, Luke A.</creator><creator>Holt, Stephen A.</creator><creator>Hughes, Arwel V.</creator><creator>Daulton, Emma L.</creator><creator>Arunmanee, Wanatchaporn</creator><creator>Heinrich, Frank</creator><creator>Khalid, Syma</creator><creator>Jefferies, Damien</creator><creator>Charlton, Timothy R.</creator><creator>Webster, John R. P.</creator><creator>Kinane, Christian J.</creator><creator>Lakey, Jeremy H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151005</creationdate><title>An Accurate In Vitro Model of the E. coli Envelope</title><author>Clifton, Luke A. ; Holt, Stephen A. ; Hughes, Arwel V. ; Daulton, Emma L. ; Arunmanee, Wanatchaporn ; Heinrich, Frank ; Khalid, Syma ; Jefferies, Damien ; Charlton, Timothy R. ; Webster, John R. P. ; Kinane, Christian J. ; Lakey, Jeremy H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5857-b8a2e12d5ffb34f3c1c066e91727c5e25d457b1d6f822ec23394966fb7dbc8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibiotics</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Communications</topic><topic>Drug Discovery</topic><topic>Drug Resistance, Bacterial</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli Infections - drug therapy</topic><topic>Escherichia coli Infections - microbiology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Gram-negative bacteria</topic><topic>Humans</topic><topic>Lipid Bilayers - chemistry</topic><topic>membranes</topic><topic>Membranes, Artificial</topic><topic>Models, Molecular</topic><topic>Phospholipids - chemistry</topic><topic>structure-activity relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clifton, Luke A.</creatorcontrib><creatorcontrib>Holt, Stephen A.</creatorcontrib><creatorcontrib>Hughes, Arwel V.</creatorcontrib><creatorcontrib>Daulton, Emma L.</creatorcontrib><creatorcontrib>Arunmanee, Wanatchaporn</creatorcontrib><creatorcontrib>Heinrich, Frank</creatorcontrib><creatorcontrib>Khalid, Syma</creatorcontrib><creatorcontrib>Jefferies, Damien</creatorcontrib><creatorcontrib>Charlton, Timothy R.</creatorcontrib><creatorcontrib>Webster, John R. P.</creatorcontrib><creatorcontrib>Kinane, Christian J.</creatorcontrib><creatorcontrib>Lakey, Jeremy H.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clifton, Luke A.</au><au>Holt, Stephen A.</au><au>Hughes, Arwel V.</au><au>Daulton, Emma L.</au><au>Arunmanee, Wanatchaporn</au><au>Heinrich, Frank</au><au>Khalid, Syma</au><au>Jefferies, Damien</au><au>Charlton, Timothy R.</au><au>Webster, John R. P.</au><au>Kinane, Christian J.</au><au>Lakey, Jeremy H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Accurate In Vitro Model of the E. coli Envelope</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-10-05</date><risdate>2015</risdate><volume>54</volume><issue>41</issue><spage>11952</spage><epage>11955</epage><pages>11952-11955</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.
Understanding the outer membranes of Gram‐negative bacteria is important for the development of new antibacterial compounds. However, their structure and dynamics are poorly understood because of their small in vivo size and inaccurate in vitro models. A stable asymmetric model of the outer membrane that can be analyzed by a range of biophysical techniques and accurately imitates the in vivo behavior of natural outer membranes is presented herein.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26331292</pmid><doi>10.1002/anie.201504287</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2015-10, Vol.54 (41), p.11952-11955 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4600229 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Anti-Bacterial Agents - pharmacology antibiotics Bacterial Outer Membrane Proteins - chemistry Communications Drug Discovery Drug Resistance, Bacterial Escherichia coli - chemistry Escherichia coli - cytology Escherichia coli - drug effects Escherichia coli Infections - drug therapy Escherichia coli Infections - microbiology Escherichia coli Proteins - chemistry Gram-negative bacteria Humans Lipid Bilayers - chemistry membranes Membranes, Artificial Models, Molecular Phospholipids - chemistry structure-activity relationships |
title | An Accurate In Vitro Model of the E. coli Envelope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Accurate%20In%20Vitro%20Model%20of%20the%20E.%E2%80%85coli%20Envelope&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Clifton,%20Luke%20A.&rft.date=2015-10-05&rft.volume=54&rft.issue=41&rft.spage=11952&rft.epage=11955&rft.pages=11952-11955&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201504287&rft_dat=%3Cproquest_pubme%3E1718328940%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718328940&rft_id=info:pmid/26331292&rfr_iscdi=true |