High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds

Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-09, Vol.6 (1), p.8195-8195, Article 8195
Hauptverfasser: Evers, Wiel H., Schins, Juleon M., Aerts, Michiel, Kulkarni, Aditya, Capiod, Pierre, Berthe, Maxime, Grandidier, Bruno, Delerue, Christophe, van der Zant, Herre S. J., van Overbeek, Carlo, Peters, Joep L., Vanmaekelbergh, Daniel, Siebbeles, Laurens D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8195
container_issue 1
container_start_page 8195
container_title Nature communications
container_volume 6
creator Evers, Wiel H.
Schins, Juleon M.
Aerts, Michiel
Kulkarni, Aditya
Capiod, Pierre
Berthe, Maxime
Grandidier, Bruno
Delerue, Christophe
van der Zant, Herre S. J.
van Overbeek, Carlo
Peters, Joep L.
Vanmaekelbergh, Daniel
Siebbeles, Laurens D. A.
description Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150±15 cm 2  V −1  s −1 at 0.2 terahertz to 260±15 cm 2  V −1  s −1 at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13±2 cm 2  V −1  s −1 . The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15–290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons. The effect of nanocrystal structure on electronic properties is of considerable interest for optoelectronic devices. Here, Evers et al . study the charge transport in two-dimensional percolative networks of PbSe and find excellent terahertz mobility of charge carriers.
doi_str_mv 10.1038/ncomms9195
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1717474301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-5d13d463068d74ac87da09304ad99395ac01ca57299eeb0145126e3450fb33833</originalsourceid><addsrcrecordid>eNplkV1vFCEUhonR2Kb2xh9gSLzxI6MwwM5w06Rp1DXZRBP1mjBwdpd2gC0wa_bfy7q1rpUbPt6H9xx4EXpOyTtKWP8-mOh9llSKR-i0JZw2tGvZ46P1CTrP-ZrUwSTtOX-KTtoZr1suT9HN3K3W2Kx1WgH2cXCjKzvsAi4_Y2Odh5BdDHrEG0gmjrq4LeAAVU03Gccl_jp8A3w76VAmj20sGZsYApgCFg87rEv0zuAhBpufoSdLPWY4v5vP0I-PH75fzZvFl0-fry4XjRG8LY2wlFk-Y2TW245r03dWE8kI11ZKJoU2hBotulZKgIFQLmg7A8YFWQ6M9YydoYuD72YaPFgDoSQ9qk1yXqeditqpf5Xg1moVt4oL2TPRVYPXB4P1g2vzy4Xan5FW1u5auqWVfXVXLMXbCXJR3mUD46gDxCkr2tGOd5yRPfryAXodp1Q_9zclJKVUiEq9OVAmxZwTLO87oETtI1d_I6_wi-On3qN_Aq7A2wOQqxRWkI5q_m_3C0mNtpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715911155</pqid></control><display><type>article</type><title>High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Evers, Wiel H. ; Schins, Juleon M. ; Aerts, Michiel ; Kulkarni, Aditya ; Capiod, Pierre ; Berthe, Maxime ; Grandidier, Bruno ; Delerue, Christophe ; van der Zant, Herre S. J. ; van Overbeek, Carlo ; Peters, Joep L. ; Vanmaekelbergh, Daniel ; Siebbeles, Laurens D. A.</creator><creatorcontrib>Evers, Wiel H. ; Schins, Juleon M. ; Aerts, Michiel ; Kulkarni, Aditya ; Capiod, Pierre ; Berthe, Maxime ; Grandidier, Bruno ; Delerue, Christophe ; van der Zant, Herre S. J. ; van Overbeek, Carlo ; Peters, Joep L. ; Vanmaekelbergh, Daniel ; Siebbeles, Laurens D. A.</creatorcontrib><description>Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150±15 cm 2  V −1  s −1 at 0.2 terahertz to 260±15 cm 2  V −1  s −1 at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13±2 cm 2  V −1  s −1 . The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15–290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons. The effect of nanocrystal structure on electronic properties is of considerable interest for optoelectronic devices. Here, Evers et al . study the charge transport in two-dimensional percolative networks of PbSe and find excellent terahertz mobility of charge carriers.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms9195</identifier><identifier>PMID: 26400049</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/119/1000 ; 639/925/357/1017 ; Chemical bonds ; Condensed Matter ; Electric fields ; Electron mobility ; Electronic structure ; Humanities and Social Sciences ; Lead selenides ; Ligands ; Mobility ; multidisciplinary ; Nanotechnology ; Nanowires ; Networks ; Photoexcitation ; Physics ; Quantum dots ; Quantum theory ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-09, Vol.6 (1), p.8195-8195, Article 8195</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Sep 2015</rights><rights>Attribution</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-5d13d463068d74ac87da09304ad99395ac01ca57299eeb0145126e3450fb33833</citedby><cites>FETCH-LOGICAL-c542t-5d13d463068d74ac87da09304ad99395ac01ca57299eeb0145126e3450fb33833</cites><orcidid>0000-0001-6131-7309 ; 0000-0002-0427-3001 ; 0000-0002-3918-7111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26400049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02906821$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Evers, Wiel H.</creatorcontrib><creatorcontrib>Schins, Juleon M.</creatorcontrib><creatorcontrib>Aerts, Michiel</creatorcontrib><creatorcontrib>Kulkarni, Aditya</creatorcontrib><creatorcontrib>Capiod, Pierre</creatorcontrib><creatorcontrib>Berthe, Maxime</creatorcontrib><creatorcontrib>Grandidier, Bruno</creatorcontrib><creatorcontrib>Delerue, Christophe</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><creatorcontrib>van Overbeek, Carlo</creatorcontrib><creatorcontrib>Peters, Joep L.</creatorcontrib><creatorcontrib>Vanmaekelbergh, Daniel</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A.</creatorcontrib><title>High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150±15 cm 2  V −1  s −1 at 0.2 terahertz to 260±15 cm 2  V −1  s −1 at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13±2 cm 2  V −1  s −1 . The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15–290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons. The effect of nanocrystal structure on electronic properties is of considerable interest for optoelectronic devices. Here, Evers et al . study the charge transport in two-dimensional percolative networks of PbSe and find excellent terahertz mobility of charge carriers.</description><subject>140/125</subject><subject>639/301/119/1000</subject><subject>639/925/357/1017</subject><subject>Chemical bonds</subject><subject>Condensed Matter</subject><subject>Electric fields</subject><subject>Electron mobility</subject><subject>Electronic structure</subject><subject>Humanities and Social Sciences</subject><subject>Lead selenides</subject><subject>Ligands</subject><subject>Mobility</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Networks</subject><subject>Photoexcitation</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1vFCEUhonR2Kb2xh9gSLzxI6MwwM5w06Rp1DXZRBP1mjBwdpd2gC0wa_bfy7q1rpUbPt6H9xx4EXpOyTtKWP8-mOh9llSKR-i0JZw2tGvZ46P1CTrP-ZrUwSTtOX-KTtoZr1suT9HN3K3W2Kx1WgH2cXCjKzvsAi4_Y2Odh5BdDHrEG0gmjrq4LeAAVU03Gccl_jp8A3w76VAmj20sGZsYApgCFg87rEv0zuAhBpufoSdLPWY4v5vP0I-PH75fzZvFl0-fry4XjRG8LY2wlFk-Y2TW245r03dWE8kI11ZKJoU2hBotulZKgIFQLmg7A8YFWQ6M9YydoYuD72YaPFgDoSQ9qk1yXqeditqpf5Xg1moVt4oL2TPRVYPXB4P1g2vzy4Xan5FW1u5auqWVfXVXLMXbCXJR3mUD46gDxCkr2tGOd5yRPfryAXodp1Q_9zclJKVUiEq9OVAmxZwTLO87oETtI1d_I6_wi-On3qN_Aq7A2wOQqxRWkI5q_m_3C0mNtpA</recordid><startdate>20150924</startdate><enddate>20150924</enddate><creator>Evers, Wiel H.</creator><creator>Schins, Juleon M.</creator><creator>Aerts, Michiel</creator><creator>Kulkarni, Aditya</creator><creator>Capiod, Pierre</creator><creator>Berthe, Maxime</creator><creator>Grandidier, Bruno</creator><creator>Delerue, Christophe</creator><creator>van der Zant, Herre S. J.</creator><creator>van Overbeek, Carlo</creator><creator>Peters, Joep L.</creator><creator>Vanmaekelbergh, Daniel</creator><creator>Siebbeles, Laurens D. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6131-7309</orcidid><orcidid>https://orcid.org/0000-0002-0427-3001</orcidid><orcidid>https://orcid.org/0000-0002-3918-7111</orcidid></search><sort><creationdate>20150924</creationdate><title>High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds</title><author>Evers, Wiel H. ; Schins, Juleon M. ; Aerts, Michiel ; Kulkarni, Aditya ; Capiod, Pierre ; Berthe, Maxime ; Grandidier, Bruno ; Delerue, Christophe ; van der Zant, Herre S. J. ; van Overbeek, Carlo ; Peters, Joep L. ; Vanmaekelbergh, Daniel ; Siebbeles, Laurens D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-5d13d463068d74ac87da09304ad99395ac01ca57299eeb0145126e3450fb33833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/125</topic><topic>639/301/119/1000</topic><topic>639/925/357/1017</topic><topic>Chemical bonds</topic><topic>Condensed Matter</topic><topic>Electric fields</topic><topic>Electron mobility</topic><topic>Electronic structure</topic><topic>Humanities and Social Sciences</topic><topic>Lead selenides</topic><topic>Ligands</topic><topic>Mobility</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Networks</topic><topic>Photoexcitation</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evers, Wiel H.</creatorcontrib><creatorcontrib>Schins, Juleon M.</creatorcontrib><creatorcontrib>Aerts, Michiel</creatorcontrib><creatorcontrib>Kulkarni, Aditya</creatorcontrib><creatorcontrib>Capiod, Pierre</creatorcontrib><creatorcontrib>Berthe, Maxime</creatorcontrib><creatorcontrib>Grandidier, Bruno</creatorcontrib><creatorcontrib>Delerue, Christophe</creatorcontrib><creatorcontrib>van der Zant, Herre S. J.</creatorcontrib><creatorcontrib>van Overbeek, Carlo</creatorcontrib><creatorcontrib>Peters, Joep L.</creatorcontrib><creatorcontrib>Vanmaekelbergh, Daniel</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evers, Wiel H.</au><au>Schins, Juleon M.</au><au>Aerts, Michiel</au><au>Kulkarni, Aditya</au><au>Capiod, Pierre</au><au>Berthe, Maxime</au><au>Grandidier, Bruno</au><au>Delerue, Christophe</au><au>van der Zant, Herre S. J.</au><au>van Overbeek, Carlo</au><au>Peters, Joep L.</au><au>Vanmaekelbergh, Daniel</au><au>Siebbeles, Laurens D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-09-24</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>8195</spage><epage>8195</epage><pages>8195-8195</pages><artnum>8195</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150±15 cm 2  V −1  s −1 at 0.2 terahertz to 260±15 cm 2  V −1  s −1 at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13±2 cm 2  V −1  s −1 . The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15–290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons. The effect of nanocrystal structure on electronic properties is of considerable interest for optoelectronic devices. Here, Evers et al . study the charge transport in two-dimensional percolative networks of PbSe and find excellent terahertz mobility of charge carriers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26400049</pmid><doi>10.1038/ncomms9195</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6131-7309</orcidid><orcidid>https://orcid.org/0000-0002-0427-3001</orcidid><orcidid>https://orcid.org/0000-0002-3918-7111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-09, Vol.6 (1), p.8195-8195, Article 8195
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598357
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 140/125
639/301/119/1000
639/925/357/1017
Chemical bonds
Condensed Matter
Electric fields
Electron mobility
Electronic structure
Humanities and Social Sciences
Lead selenides
Ligands
Mobility
multidisciplinary
Nanotechnology
Nanowires
Networks
Photoexcitation
Physics
Quantum dots
Quantum theory
Science
Science (multidisciplinary)
title High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20charge%20mobility%20in%20two-dimensional%20percolative%20networks%20of%20PbSe%20quantum%20dots%20connected%20by%20atomic%20bonds&rft.jtitle=Nature%20communications&rft.au=Evers,%20Wiel%20H.&rft.date=2015-09-24&rft.volume=6&rft.issue=1&rft.spage=8195&rft.epage=8195&rft.pages=8195-8195&rft.artnum=8195&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms9195&rft_dat=%3Cproquest_pubme%3E1717474301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715911155&rft_id=info:pmid/26400049&rfr_iscdi=true