Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface

Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2015-11, Vol.26 (11), p.253-13, Article 253
Hauptverfasser: Musilkova, Jana, Kotelnikov, Ilya, Novotna, Katarina, Pop-Georgievski, Ognen, Rypacek, Frantisek, Bacakova, Lucie, Proks, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine–poly(ethylene oxide) (PDA–PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm 2 and 700 fmol/cm 2 for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA–PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.
ISSN:0957-4530
1573-4838
DOI:10.1007/s10856-015-5583-3