Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)
Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ dif...
Gespeichert in:
Veröffentlicht in: | BMC plant biology 2015-10, Vol.15 (1), p.237-237, Article 237 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | BMC plant biology |
container_volume | 15 |
creator | Ma, Nan Chen, Wen Fan, Tiangang Tian, Yaran Zhang, Shuai Zeng, Daxing Li, Yonghong |
description | Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ differentiation remain largely unknown.
In this study, we show that low temperature treatment significantly increases petal number in rose (Rosa hybrida) through the promotion of stamen petaloidy. Quantitative RT-PCR analysis revealed that the expression pattern of RhAG, a rose homolog of the Arabidopsis thaliana AGAMOUS C-function gene, is associated with low temperature regulated flower development. Silencing of RhAG mimicked the impact of low temperature treatments on petal development by significantly increasing petal number through an increased production of petaloid stamens. In situ hybridization studies further revealed that low temperature restricts its spatial expression area. Analysis of DNA methylation level showed that low temperature treatment enhances the methylation level of the RhAG promoter, and a specific promoter region that was hypermethylated at CHH loci under low temperature conditions, was identified by bisulfite sequencing. This suggests that epigenetic DNA methylation contributes to the ambient temperature modulation of RhAG expression.
Our results provide highlights in the role of RhAG gene in petal number determination and add a new layer of complexity in the regulation of floral organ development.
We propose that RhAG plays an essential role in rose flower patterning by regulating petal development, and that low temperatures increase petal number, at least in part, by suppressing RhAG expression via enhancing DNA CHH hypermethylation of the RhAG promoter. |
doi_str_mv | 10.1186/s12870-015-0623-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4595006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541375855</galeid><sourcerecordid>A541375855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-a649ad1084ff64eb3652341fa2d57460e1eadcfe70dbafedf1e0fd4bb4f4a3ad3</originalsourceid><addsrcrecordid>eNqFktFqFDEUhgdRbK0-gDcS8KYFpyaZTDJzIwxV18JqYWuvQ2ZysjtlJtkmGe0-hm9slq1LVwTJRcKf7z8J5_xZ9prgc0Iq_j4QWgmcY1LmmNMiJ0-yY8IEySml9dNH56PsRQi3GBNRsfp5dkQ5KyrC6uPs19z9RBHGNXgVJw95b_XUgUYfvzVotUnyCHG1GVTsnUUqRrCTihAQ3K89hLBVnUGLVTN7h5RFzaz5enVzjVZudINbbjWNett5UCG51hDVgOw0tuCTjLwLgE4XLqj0WOt7rc5eZs-MGgK8ethPspvPn75ffMnnV7PLi2aed5yKmCvOaqUJrpgxnEFb8JIWjBhFdSkYx0BA6c6AwLpVBrQhgI1mbcsMU4XSxUn2YVd3PbUj6A5s9GqQa9-Pym-kU708vLH9Si7dD8nKusSYpwKnDwW8u5sgRDn2oYNhUBbcFCTFGJeccPZ_lAhS14ITXCT07V_orZu8TZ1IlKgFETSNek8t1QCyt8alL3bborIpGSlEWZVlos7_QaWlYew7Z8H0ST8wnB0YEhPhPi7VFIK8vF4csmTHdmmIwYPZt45guY2n3MVTpnjKbTwlSZ43j3u-d_zJY_Ebs-fgXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779717262</pqid></control><display><type>article</type><title>Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)</title><source>PubMed Central (Open Access)</source><source>SpringerOpen</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Ma, Nan ; Chen, Wen ; Fan, Tiangang ; Tian, Yaran ; Zhang, Shuai ; Zeng, Daxing ; Li, Yonghong</creator><creatorcontrib>Ma, Nan ; Chen, Wen ; Fan, Tiangang ; Tian, Yaran ; Zhang, Shuai ; Zeng, Daxing ; Li, Yonghong</creatorcontrib><description>Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ differentiation remain largely unknown.
In this study, we show that low temperature treatment significantly increases petal number in rose (Rosa hybrida) through the promotion of stamen petaloidy. Quantitative RT-PCR analysis revealed that the expression pattern of RhAG, a rose homolog of the Arabidopsis thaliana AGAMOUS C-function gene, is associated with low temperature regulated flower development. Silencing of RhAG mimicked the impact of low temperature treatments on petal development by significantly increasing petal number through an increased production of petaloid stamens. In situ hybridization studies further revealed that low temperature restricts its spatial expression area. Analysis of DNA methylation level showed that low temperature treatment enhances the methylation level of the RhAG promoter, and a specific promoter region that was hypermethylated at CHH loci under low temperature conditions, was identified by bisulfite sequencing. This suggests that epigenetic DNA methylation contributes to the ambient temperature modulation of RhAG expression.
Our results provide highlights in the role of RhAG gene in petal number determination and add a new layer of complexity in the regulation of floral organ development.
We propose that RhAG plays an essential role in rose flower patterning by regulating petal development, and that low temperatures increase petal number, at least in part, by suppressing RhAG expression via enhancing DNA CHH hypermethylation of the RhAG promoter.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-015-0623-1</identifier><identifier>PMID: 26438149</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>ambient temperature ; Arabidopsis thaliana ; cold ; Cold Temperature ; corolla ; DNA ; DNA methylation ; DNA Methylation - genetics ; epigenetics ; flowering date ; Flowers - anatomy & histology ; Flowers - genetics ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gene Silencing ; genes ; Genes, Plant ; hybrids ; In Situ Hybridization ; loci ; Molecular Sequence Data ; Phenotype ; Plant Proteins - genetics ; Plant Proteins - metabolism ; promoter regions ; Promoter Regions, Genetic ; reproduction ; reverse transcriptase polymerase chain reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rosa ; Rosa - genetics ; Rosa - growth & development ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; stamens</subject><ispartof>BMC plant biology, 2015-10, Vol.15 (1), p.237-237, Article 237</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2015</rights><rights>Ma et al. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-a649ad1084ff64eb3652341fa2d57460e1eadcfe70dbafedf1e0fd4bb4f4a3ad3</citedby><cites>FETCH-LOGICAL-c627t-a649ad1084ff64eb3652341fa2d57460e1eadcfe70dbafedf1e0fd4bb4f4a3ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595006/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595006/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26438149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Nan</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Fan, Tiangang</creatorcontrib><creatorcontrib>Tian, Yaran</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Zeng, Daxing</creatorcontrib><creatorcontrib>Li, Yonghong</creatorcontrib><title>Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ differentiation remain largely unknown.
In this study, we show that low temperature treatment significantly increases petal number in rose (Rosa hybrida) through the promotion of stamen petaloidy. Quantitative RT-PCR analysis revealed that the expression pattern of RhAG, a rose homolog of the Arabidopsis thaliana AGAMOUS C-function gene, is associated with low temperature regulated flower development. Silencing of RhAG mimicked the impact of low temperature treatments on petal development by significantly increasing petal number through an increased production of petaloid stamens. In situ hybridization studies further revealed that low temperature restricts its spatial expression area. Analysis of DNA methylation level showed that low temperature treatment enhances the methylation level of the RhAG promoter, and a specific promoter region that was hypermethylated at CHH loci under low temperature conditions, was identified by bisulfite sequencing. This suggests that epigenetic DNA methylation contributes to the ambient temperature modulation of RhAG expression.
Our results provide highlights in the role of RhAG gene in petal number determination and add a new layer of complexity in the regulation of floral organ development.
We propose that RhAG plays an essential role in rose flower patterning by regulating petal development, and that low temperatures increase petal number, at least in part, by suppressing RhAG expression via enhancing DNA CHH hypermethylation of the RhAG promoter.</description><subject>ambient temperature</subject><subject>Arabidopsis thaliana</subject><subject>cold</subject><subject>Cold Temperature</subject><subject>corolla</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>epigenetics</subject><subject>flowering date</subject><subject>Flowers - anatomy & histology</subject><subject>Flowers - genetics</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>hybrids</subject><subject>In Situ Hybridization</subject><subject>loci</subject><subject>Molecular Sequence Data</subject><subject>Phenotype</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>reproduction</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rosa</subject><subject>Rosa - genetics</subject><subject>Rosa - growth & development</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>stamens</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFktFqFDEUhgdRbK0-gDcS8KYFpyaZTDJzIwxV18JqYWuvQ2ZysjtlJtkmGe0-hm9slq1LVwTJRcKf7z8J5_xZ9prgc0Iq_j4QWgmcY1LmmNMiJ0-yY8IEySml9dNH56PsRQi3GBNRsfp5dkQ5KyrC6uPs19z9RBHGNXgVJw95b_XUgUYfvzVotUnyCHG1GVTsnUUqRrCTihAQ3K89hLBVnUGLVTN7h5RFzaz5enVzjVZudINbbjWNett5UCG51hDVgOw0tuCTjLwLgE4XLqj0WOt7rc5eZs-MGgK8ethPspvPn75ffMnnV7PLi2aed5yKmCvOaqUJrpgxnEFb8JIWjBhFdSkYx0BA6c6AwLpVBrQhgI1mbcsMU4XSxUn2YVd3PbUj6A5s9GqQa9-Pym-kU708vLH9Si7dD8nKusSYpwKnDwW8u5sgRDn2oYNhUBbcFCTFGJeccPZ_lAhS14ITXCT07V_orZu8TZ1IlKgFETSNek8t1QCyt8alL3bborIpGSlEWZVlos7_QaWlYew7Z8H0ST8wnB0YEhPhPi7VFIK8vF4csmTHdmmIwYPZt45guY2n3MVTpnjKbTwlSZ43j3u-d_zJY_Ebs-fgXQ</recordid><startdate>20151005</startdate><enddate>20151005</enddate><creator>Ma, Nan</creator><creator>Chen, Wen</creator><creator>Fan, Tiangang</creator><creator>Tian, Yaran</creator><creator>Zhang, Shuai</creator><creator>Zeng, Daxing</creator><creator>Li, Yonghong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151005</creationdate><title>Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)</title><author>Ma, Nan ; Chen, Wen ; Fan, Tiangang ; Tian, Yaran ; Zhang, Shuai ; Zeng, Daxing ; Li, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-a649ad1084ff64eb3652341fa2d57460e1eadcfe70dbafedf1e0fd4bb4f4a3ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ambient temperature</topic><topic>Arabidopsis thaliana</topic><topic>cold</topic><topic>Cold Temperature</topic><topic>corolla</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>epigenetics</topic><topic>flowering date</topic><topic>Flowers - anatomy & histology</topic><topic>Flowers - genetics</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>hybrids</topic><topic>In Situ Hybridization</topic><topic>loci</topic><topic>Molecular Sequence Data</topic><topic>Phenotype</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>reproduction</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rosa</topic><topic>Rosa - genetics</topic><topic>Rosa - growth & development</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>stamens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Nan</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Fan, Tiangang</creatorcontrib><creatorcontrib>Tian, Yaran</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Zeng, Daxing</creatorcontrib><creatorcontrib>Li, Yonghong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Nan</au><au>Chen, Wen</au><au>Fan, Tiangang</au><au>Tian, Yaran</au><au>Zhang, Shuai</au><au>Zeng, Daxing</au><au>Li, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2015-10-05</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>237</spage><epage>237</epage><pages>237-237</pages><artnum>237</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ differentiation remain largely unknown.
In this study, we show that low temperature treatment significantly increases petal number in rose (Rosa hybrida) through the promotion of stamen petaloidy. Quantitative RT-PCR analysis revealed that the expression pattern of RhAG, a rose homolog of the Arabidopsis thaliana AGAMOUS C-function gene, is associated with low temperature regulated flower development. Silencing of RhAG mimicked the impact of low temperature treatments on petal development by significantly increasing petal number through an increased production of petaloid stamens. In situ hybridization studies further revealed that low temperature restricts its spatial expression area. Analysis of DNA methylation level showed that low temperature treatment enhances the methylation level of the RhAG promoter, and a specific promoter region that was hypermethylated at CHH loci under low temperature conditions, was identified by bisulfite sequencing. This suggests that epigenetic DNA methylation contributes to the ambient temperature modulation of RhAG expression.
Our results provide highlights in the role of RhAG gene in petal number determination and add a new layer of complexity in the regulation of floral organ development.
We propose that RhAG plays an essential role in rose flower patterning by regulating petal development, and that low temperatures increase petal number, at least in part, by suppressing RhAG expression via enhancing DNA CHH hypermethylation of the RhAG promoter.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26438149</pmid><doi>10.1186/s12870-015-0623-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2229 |
ispartof | BMC plant biology, 2015-10, Vol.15 (1), p.237-237, Article 237 |
issn | 1471-2229 1471-2229 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4595006 |
source | PubMed Central (Open Access); SpringerOpen; MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | ambient temperature Arabidopsis thaliana cold Cold Temperature corolla DNA DNA methylation DNA Methylation - genetics epigenetics flowering date Flowers - anatomy & histology Flowers - genetics Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Gene Silencing genes Genes, Plant hybrids In Situ Hybridization loci Molecular Sequence Data Phenotype Plant Proteins - genetics Plant Proteins - metabolism promoter regions Promoter Regions, Genetic reproduction reverse transcriptase polymerase chain reaction RNA, Messenger - genetics RNA, Messenger - metabolism Rosa Rosa - genetics Rosa - growth & development Sequence Analysis, DNA Sequence Homology, Amino Acid stamens |
title | Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature-induced%20DNA%20hypermethylation%20attenuates%20expression%20of%20RhAG,%20an%20AGAMOUS%20homolog,%20and%20increases%20petal%20number%20in%20rose%20(Rosa%20hybrida)&rft.jtitle=BMC%20plant%20biology&rft.au=Ma,%20Nan&rft.date=2015-10-05&rft.volume=15&rft.issue=1&rft.spage=237&rft.epage=237&rft.pages=237-237&rft.artnum=237&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-015-0623-1&rft_dat=%3Cgale_pubme%3EA541375855%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779717262&rft_id=info:pmid/26438149&rft_galeid=A541375855&rfr_iscdi=true |