Entropy-Scaling Search of Massive Biological Data

Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset’s entropy and fractal dimension. We prove that sea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell systems 2015-08, Vol.1 (2), p.130-140
Hauptverfasser: Yu, Y. William, Daniels, Noah M., Danko, David Christian, Berger, Bonnie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 2
container_start_page 130
container_title Cell systems
container_volume 1
creator Yu, Y. William
Daniels, Noah M.
Danko, David Christian
Berger, Bonnie
description Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset’s entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains—high-throughput drug screening (Ammolite, 150× speedup), metagenomics (MICA, 3.5× speedup of DIAMOND [3,700× BLASTX]), and protein structure search (esFragBag, 10× speedup of FragBag). Our framework can be used to achieve “‘compressive omics,” and the general theory can be readily applied to data science problems outside of biology (source code: http://gems.csail.mit.edu). [Display omitted] •We describe entropy-scaling search for finding approximate matches in a database•Search complexity is bounded in time and space by the entropy of the database•We make tools that enable search of three largely intractable real-world databases•The tools dramatically accelerate metagenomic, chemical, and protein structure search Yu, Daniels et al. describe a general framework for efficiently searching massive datasets having certain properties common in biology.
doi_str_mv 10.1016/j.cels.2015.08.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4591002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471215000587</els_id><sourcerecordid>1826642083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-91fd24d2a2950c3f1f9c6275903adc32ebfdc9c27db40b0dccc90638888ab84c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoVmq_gAfZo5ddJ9nsdhdE0Fr_QMVD9Ryyk2xN2W5qsi3025vSWvTiXDJk3nsz_Ai5oJBQoPn1PEHd-IQBzRIoEgB-RM4YhyzmQwbHh56yHhl4PwcAysvwyU5Jj-U8zSmHM0LHbefschNPUTamnUVTLR1-RraOXqX3Zq2je2MbOzNhHj3ITp6Tk1o2Xg_2b598PI7fR8_x5O3pZXQ3iZFnWReXtFaMKyZZmQGmNa1LzNkwKyGVClOmq1phiWyoKg4VKEQsIU-LULIqOKZ9crvLXa6qhVaow6GyEUtnFtJthJVG_J205lPM7FrwrKQALARc7QOc_Vpp34mF8QFaI1ttV17QguU5Z1CkQcp2UnTWe6frwxoKYotbzMUWt9jiFlCIgDuYLn8feLD8wA2Cm50gOPXaaCc8Gt2iVsZp7ISy5r_8b_2tkMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826642083</pqid></control><display><type>article</type><title>Entropy-Scaling Search of Massive Biological Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Y. William ; Daniels, Noah M. ; Danko, David Christian ; Berger, Bonnie</creator><creatorcontrib>Yu, Y. William ; Daniels, Noah M. ; Danko, David Christian ; Berger, Bonnie</creatorcontrib><description>Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset’s entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains—high-throughput drug screening (Ammolite, 150× speedup), metagenomics (MICA, 3.5× speedup of DIAMOND [3,700× BLASTX]), and protein structure search (esFragBag, 10× speedup of FragBag). Our framework can be used to achieve “‘compressive omics,” and the general theory can be readily applied to data science problems outside of biology (source code: http://gems.csail.mit.edu). [Display omitted] •We describe entropy-scaling search for finding approximate matches in a database•Search complexity is bounded in time and space by the entropy of the database•We make tools that enable search of three largely intractable real-world databases•The tools dramatically accelerate metagenomic, chemical, and protein structure search Yu, Daniels et al. describe a general framework for efficiently searching massive datasets having certain properties common in biology.</description><identifier>ISSN: 2405-4712</identifier><identifier>EISSN: 2405-4720</identifier><identifier>EISSN: 2405-4712</identifier><identifier>DOI: 10.1016/j.cels.2015.08.004</identifier><identifier>PMID: 26436140</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Cell systems, 2015-08, Vol.1 (2), p.130-140</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-91fd24d2a2950c3f1f9c6275903adc32ebfdc9c27db40b0dccc90638888ab84c3</citedby><cites>FETCH-LOGICAL-c455t-91fd24d2a2950c3f1f9c6275903adc32ebfdc9c27db40b0dccc90638888ab84c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26436140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Y. William</creatorcontrib><creatorcontrib>Daniels, Noah M.</creatorcontrib><creatorcontrib>Danko, David Christian</creatorcontrib><creatorcontrib>Berger, Bonnie</creatorcontrib><title>Entropy-Scaling Search of Massive Biological Data</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset’s entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains—high-throughput drug screening (Ammolite, 150× speedup), metagenomics (MICA, 3.5× speedup of DIAMOND [3,700× BLASTX]), and protein structure search (esFragBag, 10× speedup of FragBag). Our framework can be used to achieve “‘compressive omics,” and the general theory can be readily applied to data science problems outside of biology (source code: http://gems.csail.mit.edu). [Display omitted] •We describe entropy-scaling search for finding approximate matches in a database•Search complexity is bounded in time and space by the entropy of the database•We make tools that enable search of three largely intractable real-world databases•The tools dramatically accelerate metagenomic, chemical, and protein structure search Yu, Daniels et al. describe a general framework for efficiently searching massive datasets having certain properties common in biology.</description><issn>2405-4712</issn><issn>2405-4720</issn><issn>2405-4712</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoVmq_gAfZo5ddJ9nsdhdE0Fr_QMVD9Ryyk2xN2W5qsi3025vSWvTiXDJk3nsz_Ai5oJBQoPn1PEHd-IQBzRIoEgB-RM4YhyzmQwbHh56yHhl4PwcAysvwyU5Jj-U8zSmHM0LHbefschNPUTamnUVTLR1-RraOXqX3Zq2je2MbOzNhHj3ITp6Tk1o2Xg_2b598PI7fR8_x5O3pZXQ3iZFnWReXtFaMKyZZmQGmNa1LzNkwKyGVClOmq1phiWyoKg4VKEQsIU-LULIqOKZ9crvLXa6qhVaow6GyEUtnFtJthJVG_J205lPM7FrwrKQALARc7QOc_Vpp34mF8QFaI1ttV17QguU5Z1CkQcp2UnTWe6frwxoKYotbzMUWt9jiFlCIgDuYLn8feLD8wA2Cm50gOPXaaCc8Gt2iVsZp7ISy5r_8b_2tkMo</recordid><startdate>20150826</startdate><enddate>20150826</enddate><creator>Yu, Y. William</creator><creator>Daniels, Noah M.</creator><creator>Danko, David Christian</creator><creator>Berger, Bonnie</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150826</creationdate><title>Entropy-Scaling Search of Massive Biological Data</title><author>Yu, Y. William ; Daniels, Noah M. ; Danko, David Christian ; Berger, Bonnie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-91fd24d2a2950c3f1f9c6275903adc32ebfdc9c27db40b0dccc90638888ab84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Y. William</creatorcontrib><creatorcontrib>Daniels, Noah M.</creatorcontrib><creatorcontrib>Danko, David Christian</creatorcontrib><creatorcontrib>Berger, Bonnie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Y. William</au><au>Daniels, Noah M.</au><au>Danko, David Christian</au><au>Berger, Bonnie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-Scaling Search of Massive Biological Data</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2015-08-26</date><risdate>2015</risdate><volume>1</volume><issue>2</issue><spage>130</spage><epage>140</epage><pages>130-140</pages><issn>2405-4712</issn><eissn>2405-4720</eissn><eissn>2405-4712</eissn><abstract>Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset’s entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains—high-throughput drug screening (Ammolite, 150× speedup), metagenomics (MICA, 3.5× speedup of DIAMOND [3,700× BLASTX]), and protein structure search (esFragBag, 10× speedup of FragBag). Our framework can be used to achieve “‘compressive omics,” and the general theory can be readily applied to data science problems outside of biology (source code: http://gems.csail.mit.edu). [Display omitted] •We describe entropy-scaling search for finding approximate matches in a database•Search complexity is bounded in time and space by the entropy of the database•We make tools that enable search of three largely intractable real-world databases•The tools dramatically accelerate metagenomic, chemical, and protein structure search Yu, Daniels et al. describe a general framework for efficiently searching massive datasets having certain properties common in biology.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26436140</pmid><doi>10.1016/j.cels.2015.08.004</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-4712
ispartof Cell systems, 2015-08, Vol.1 (2), p.130-140
issn 2405-4712
2405-4720
2405-4712
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4591002
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Entropy-Scaling Search of Massive Biological Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-Scaling%20Search%20of%20Massive%20Biological%20Data&rft.jtitle=Cell%20systems&rft.au=Yu,%20Y.%C2%A0William&rft.date=2015-08-26&rft.volume=1&rft.issue=2&rft.spage=130&rft.epage=140&rft.pages=130-140&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2015.08.004&rft_dat=%3Cproquest_pubme%3E1826642083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826642083&rft_id=info:pmid/26436140&rft_els_id=S2405471215000587&rfr_iscdi=true