Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells

Oxidative stress and inflammation are two interrelated biological events implicated in the pathogenesis of many diseases. Reactive oxygen species (ROS) produced under oxidative stress play a key role in pathological conditions. Inhibition of p22phox, an indispensable component of the NADPH oxidase (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-09, Vol.5 (1), p.14362-14362, Article 14362
Hauptverfasser: Qiu, Yiguo, Tao, Lifei, Lei, Chunyan, Wang, Jiaming, Yang, Peizeng, Li, Qiuhong, Lei, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14362
container_issue 1
container_start_page 14362
container_title Scientific reports
container_volume 5
creator Qiu, Yiguo
Tao, Lifei
Lei, Chunyan
Wang, Jiaming
Yang, Peizeng
Li, Qiuhong
Lei, Bo
description Oxidative stress and inflammation are two interrelated biological events implicated in the pathogenesis of many diseases. Reactive oxygen species (ROS) produced under oxidative stress play a key role in pathological conditions. Inhibition of p22phox, an indispensable component of the NADPH oxidase (NOX) complex comprising the main source of ROS, plays a protective role in many ocular conditions by inhibiting the activation of NOXs and the generation of ROS. However, little is understood regarding the role of p22phox in oxidative stress-related inflammation in the eye. We used a p22phox small interfering RNA (siRNA) to transfect the retinal pigment epithelium (RPE)-derived cell line ARPE-19 and human primary RPE (hRPE) cells, then stimulated with Ang II. We observed a potent anti-inflammatory effect and studied the underlying mechanism. Downregulating p22phox resulted in decreased ROS generation, a reduction of NOXs (NOX1, 2, 4) and a decrease in inflammatory cytokine. In addition, p22phox downregulation reduced the activation of the MAPK and NF-κB signaling pathways. We conclude that inhibition of p22phox has an anti-inflammatory effect in Ang II-induced oxidative stress. Suppressing the MAPK and NF-κB pathways is involved in this protective effect. These results suggest that p22phox may provide a promising therapeutic target for oxidative stress-induced ocular inflammation
doi_str_mv 10.1038/srep14362
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4586461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718076512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-e21308ad67dec74bc41a2acc22ef8bf29899244bc2c244c6def41c514ad147103</originalsourceid><addsrcrecordid>eNptkc9u1DAQxi0EolXpgRdAPgJSIJ44_y5IS2lhRYEKwdny2pOsq8RObaftPgtvwkPwTHjZsioSvsxo5udv7PkIecryVywvmtfB48R4UcEDcgg5LzMoAB7eyw_IcQiXeToltJy1j8kBVJyVTV0fkh_v3I312M-DjMb2dAKY1u6WyhEH47yMGKix3SDHUUbnN9RjmJwNmKp0YXvjItqQ8uUyM1bPCjV1t0YntWukISY80NX22n7Ep8XFRyqtpp_Psl8_39JJxvWN3IQ_il8vTjPWUoXDEJ6QR50cAh7fxSPy_ez028mH7PzL--XJ4jxTBc9jhsCKvJG6qjWqmq8UZxKkUgDYNasO2qZtgac6qBRUpbHjTJWMS814nXZ4RN7sdKd5NaJWaKOXg5i8GaXfCCeN-LdjzVr07lrwsql4xZLA8zsB765mDFGMJmy_IC26OQhWsyavq5JBQl_sUOVdSNZ1-zEsF1s_xd7PxD67_649-de9BLzcASG1bI9eXLrZ27Sr_6j9BjSgrbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718076512</pqid></control><display><type>article</type><title>Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Qiu, Yiguo ; Tao, Lifei ; Lei, Chunyan ; Wang, Jiaming ; Yang, Peizeng ; Li, Qiuhong ; Lei, Bo</creator><creatorcontrib>Qiu, Yiguo ; Tao, Lifei ; Lei, Chunyan ; Wang, Jiaming ; Yang, Peizeng ; Li, Qiuhong ; Lei, Bo</creatorcontrib><description>Oxidative stress and inflammation are two interrelated biological events implicated in the pathogenesis of many diseases. Reactive oxygen species (ROS) produced under oxidative stress play a key role in pathological conditions. Inhibition of p22phox, an indispensable component of the NADPH oxidase (NOX) complex comprising the main source of ROS, plays a protective role in many ocular conditions by inhibiting the activation of NOXs and the generation of ROS. However, little is understood regarding the role of p22phox in oxidative stress-related inflammation in the eye. We used a p22phox small interfering RNA (siRNA) to transfect the retinal pigment epithelium (RPE)-derived cell line ARPE-19 and human primary RPE (hRPE) cells, then stimulated with Ang II. We observed a potent anti-inflammatory effect and studied the underlying mechanism. Downregulating p22phox resulted in decreased ROS generation, a reduction of NOXs (NOX1, 2, 4) and a decrease in inflammatory cytokine. In addition, p22phox downregulation reduced the activation of the MAPK and NF-κB signaling pathways. We conclude that inhibition of p22phox has an anti-inflammatory effect in Ang II-induced oxidative stress. Suppressing the MAPK and NF-κB pathways is involved in this protective effect. These results suggest that p22phox may provide a promising therapeutic target for oxidative stress-induced ocular inflammation</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep14362</identifier><identifier>PMID: 26415877</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject><![CDATA[13 ; 13/21 ; 13/31 ; 13/89 ; 13/95 ; 38/77 ; 631/250/256 ; 692/308/1426 ; Angiotensin II - pharmacology ; Cell Line ; Chemokine CCL2 - antagonists & inhibitors ; Chemokine CCL2 - genetics ; Chemokine CCL2 - metabolism ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Gene Expression Regulation ; Humanities and Social Sciences ; Humans ; Inflammation ; Interleukin-6 - antagonists & inhibitors ; Interleukin-6 - genetics ; Interleukin-6 - metabolism ; Interleukin-8 - antagonists & inhibitors ; Interleukin-8 - genetics ; Interleukin-8 - metabolism ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mitogen-Activated Protein Kinase 1 - genetics ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; multidisciplinary ; NADPH Oxidase 1 ; NADPH Oxidase 2 ; NADPH Oxidase 4 ; NADPH Oxidases - antagonists & inhibitors ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; NF-kappa B - antagonists & inhibitors ; NF-kappa B - genetics ; NF-kappa B - metabolism ; Oxidative Stress ; p38 Mitogen-Activated Protein Kinases - antagonists & inhibitors ; p38 Mitogen-Activated Protein Kinases - genetics ; p38 Mitogen-Activated Protein Kinases - metabolism ; Primary Cell Culture ; Retinal Pigment Epithelium - cytology ; Retinal Pigment Epithelium - drug effects ; Retinal Pigment Epithelium - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Science ; Signal Transduction]]></subject><ispartof>Scientific reports, 2015-09, Vol.5 (1), p.14362-14362, Article 14362</ispartof><rights>The Author(s) 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-e21308ad67dec74bc41a2acc22ef8bf29899244bc2c244c6def41c514ad147103</citedby><cites>FETCH-LOGICAL-c340t-e21308ad67dec74bc41a2acc22ef8bf29899244bc2c244c6def41c514ad147103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586461/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586461/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26415877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Yiguo</creatorcontrib><creatorcontrib>Tao, Lifei</creatorcontrib><creatorcontrib>Lei, Chunyan</creatorcontrib><creatorcontrib>Wang, Jiaming</creatorcontrib><creatorcontrib>Yang, Peizeng</creatorcontrib><creatorcontrib>Li, Qiuhong</creatorcontrib><creatorcontrib>Lei, Bo</creatorcontrib><title>Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Oxidative stress and inflammation are two interrelated biological events implicated in the pathogenesis of many diseases. Reactive oxygen species (ROS) produced under oxidative stress play a key role in pathological conditions. Inhibition of p22phox, an indispensable component of the NADPH oxidase (NOX) complex comprising the main source of ROS, plays a protective role in many ocular conditions by inhibiting the activation of NOXs and the generation of ROS. However, little is understood regarding the role of p22phox in oxidative stress-related inflammation in the eye. We used a p22phox small interfering RNA (siRNA) to transfect the retinal pigment epithelium (RPE)-derived cell line ARPE-19 and human primary RPE (hRPE) cells, then stimulated with Ang II. We observed a potent anti-inflammatory effect and studied the underlying mechanism. Downregulating p22phox resulted in decreased ROS generation, a reduction of NOXs (NOX1, 2, 4) and a decrease in inflammatory cytokine. In addition, p22phox downregulation reduced the activation of the MAPK and NF-κB signaling pathways. We conclude that inhibition of p22phox has an anti-inflammatory effect in Ang II-induced oxidative stress. Suppressing the MAPK and NF-κB pathways is involved in this protective effect. These results suggest that p22phox may provide a promising therapeutic target for oxidative stress-induced ocular inflammation</description><subject>13</subject><subject>13/21</subject><subject>13/31</subject><subject>13/89</subject><subject>13/95</subject><subject>38/77</subject><subject>631/250/256</subject><subject>692/308/1426</subject><subject>Angiotensin II - pharmacology</subject><subject>Cell Line</subject><subject>Chemokine CCL2 - antagonists &amp; inhibitors</subject><subject>Chemokine CCL2 - genetics</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Interleukin-6 - antagonists &amp; inhibitors</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - metabolism</subject><subject>Interleukin-8 - antagonists &amp; inhibitors</subject><subject>Interleukin-8 - genetics</subject><subject>Interleukin-8 - metabolism</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mitogen-Activated Protein Kinase 1 - genetics</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>multidisciplinary</subject><subject>NADPH Oxidase 1</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidase 4</subject><subject>NADPH Oxidases - antagonists &amp; inhibitors</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>NF-kappa B - antagonists &amp; inhibitors</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>Oxidative Stress</subject><subject>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</subject><subject>p38 Mitogen-Activated Protein Kinases - genetics</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Primary Cell Culture</subject><subject>Retinal Pigment Epithelium - cytology</subject><subject>Retinal Pigment Epithelium - drug effects</subject><subject>Retinal Pigment Epithelium - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Science</subject><subject>Signal Transduction</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNptkc9u1DAQxi0EolXpgRdAPgJSIJ44_y5IS2lhRYEKwdny2pOsq8RObaftPgtvwkPwTHjZsioSvsxo5udv7PkIecryVywvmtfB48R4UcEDcgg5LzMoAB7eyw_IcQiXeToltJy1j8kBVJyVTV0fkh_v3I312M-DjMb2dAKY1u6WyhEH47yMGKix3SDHUUbnN9RjmJwNmKp0YXvjItqQ8uUyM1bPCjV1t0YntWukISY80NX22n7Ep8XFRyqtpp_Psl8_39JJxvWN3IQ_il8vTjPWUoXDEJ6QR50cAh7fxSPy_ez028mH7PzL--XJ4jxTBc9jhsCKvJG6qjWqmq8UZxKkUgDYNasO2qZtgac6qBRUpbHjTJWMS814nXZ4RN7sdKd5NaJWaKOXg5i8GaXfCCeN-LdjzVr07lrwsql4xZLA8zsB765mDFGMJmy_IC26OQhWsyavq5JBQl_sUOVdSNZ1-zEsF1s_xd7PxD67_649-de9BLzcASG1bI9eXLrZ27Sr_6j9BjSgrbI</recordid><startdate>20150929</startdate><enddate>20150929</enddate><creator>Qiu, Yiguo</creator><creator>Tao, Lifei</creator><creator>Lei, Chunyan</creator><creator>Wang, Jiaming</creator><creator>Yang, Peizeng</creator><creator>Li, Qiuhong</creator><creator>Lei, Bo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150929</creationdate><title>Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells</title><author>Qiu, Yiguo ; Tao, Lifei ; Lei, Chunyan ; Wang, Jiaming ; Yang, Peizeng ; Li, Qiuhong ; Lei, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-e21308ad67dec74bc41a2acc22ef8bf29899244bc2c244c6def41c514ad147103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13</topic><topic>13/21</topic><topic>13/31</topic><topic>13/89</topic><topic>13/95</topic><topic>38/77</topic><topic>631/250/256</topic><topic>692/308/1426</topic><topic>Angiotensin II - pharmacology</topic><topic>Cell Line</topic><topic>Chemokine CCL2 - antagonists &amp; inhibitors</topic><topic>Chemokine CCL2 - genetics</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Interleukin-6 - antagonists &amp; inhibitors</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - metabolism</topic><topic>Interleukin-8 - antagonists &amp; inhibitors</topic><topic>Interleukin-8 - genetics</topic><topic>Interleukin-8 - metabolism</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mitogen-Activated Protein Kinase 1 - genetics</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>multidisciplinary</topic><topic>NADPH Oxidase 1</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidase 4</topic><topic>NADPH Oxidases - antagonists &amp; inhibitors</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>NF-kappa B - antagonists &amp; inhibitors</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>Oxidative Stress</topic><topic>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</topic><topic>p38 Mitogen-Activated Protein Kinases - genetics</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Primary Cell Culture</topic><topic>Retinal Pigment Epithelium - cytology</topic><topic>Retinal Pigment Epithelium - drug effects</topic><topic>Retinal Pigment Epithelium - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Science</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yiguo</creatorcontrib><creatorcontrib>Tao, Lifei</creatorcontrib><creatorcontrib>Lei, Chunyan</creatorcontrib><creatorcontrib>Wang, Jiaming</creatorcontrib><creatorcontrib>Yang, Peizeng</creatorcontrib><creatorcontrib>Li, Qiuhong</creatorcontrib><creatorcontrib>Lei, Bo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yiguo</au><au>Tao, Lifei</au><au>Lei, Chunyan</au><au>Wang, Jiaming</au><au>Yang, Peizeng</au><au>Li, Qiuhong</au><au>Lei, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-09-29</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>14362</spage><epage>14362</epage><pages>14362-14362</pages><artnum>14362</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Oxidative stress and inflammation are two interrelated biological events implicated in the pathogenesis of many diseases. Reactive oxygen species (ROS) produced under oxidative stress play a key role in pathological conditions. Inhibition of p22phox, an indispensable component of the NADPH oxidase (NOX) complex comprising the main source of ROS, plays a protective role in many ocular conditions by inhibiting the activation of NOXs and the generation of ROS. However, little is understood regarding the role of p22phox in oxidative stress-related inflammation in the eye. We used a p22phox small interfering RNA (siRNA) to transfect the retinal pigment epithelium (RPE)-derived cell line ARPE-19 and human primary RPE (hRPE) cells, then stimulated with Ang II. We observed a potent anti-inflammatory effect and studied the underlying mechanism. Downregulating p22phox resulted in decreased ROS generation, a reduction of NOXs (NOX1, 2, 4) and a decrease in inflammatory cytokine. In addition, p22phox downregulation reduced the activation of the MAPK and NF-κB signaling pathways. We conclude that inhibition of p22phox has an anti-inflammatory effect in Ang II-induced oxidative stress. Suppressing the MAPK and NF-κB pathways is involved in this protective effect. These results suggest that p22phox may provide a promising therapeutic target for oxidative stress-induced ocular inflammation</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26415877</pmid><doi>10.1038/srep14362</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-09, Vol.5 (1), p.14362-14362, Article 14362
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4586461
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13
13/21
13/31
13/89
13/95
38/77
631/250/256
692/308/1426
Angiotensin II - pharmacology
Cell Line
Chemokine CCL2 - antagonists & inhibitors
Chemokine CCL2 - genetics
Chemokine CCL2 - metabolism
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Gene Expression Regulation
Humanities and Social Sciences
Humans
Inflammation
Interleukin-6 - antagonists & inhibitors
Interleukin-6 - genetics
Interleukin-6 - metabolism
Interleukin-8 - antagonists & inhibitors
Interleukin-8 - genetics
Interleukin-8 - metabolism
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mitogen-Activated Protein Kinase 1 - genetics
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - genetics
Mitogen-Activated Protein Kinase 3 - metabolism
multidisciplinary
NADPH Oxidase 1
NADPH Oxidase 2
NADPH Oxidase 4
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
NF-kappa B - antagonists & inhibitors
NF-kappa B - genetics
NF-kappa B - metabolism
Oxidative Stress
p38 Mitogen-Activated Protein Kinases - antagonists & inhibitors
p38 Mitogen-Activated Protein Kinases - genetics
p38 Mitogen-Activated Protein Kinases - metabolism
Primary Cell Culture
Retinal Pigment Epithelium - cytology
Retinal Pigment Epithelium - drug effects
Retinal Pigment Epithelium - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Science
Signal Transduction
title Downregulating p22phox ameliorates inflammatory response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-κB pathways in ARPE-19 cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulating%20p22phox%20ameliorates%20inflammatory%20response%20in%20Angiotensin%20II-induced%20oxidative%20stress%20by%20regulating%20MAPK%20and%20NF-%CE%BAB%20pathways%20in%20ARPE-19%20cells&rft.jtitle=Scientific%20reports&rft.au=Qiu,%20Yiguo&rft.date=2015-09-29&rft.volume=5&rft.issue=1&rft.spage=14362&rft.epage=14362&rft.pages=14362-14362&rft.artnum=14362&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep14362&rft_dat=%3Cproquest_pubme%3E1718076512%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718076512&rft_id=info:pmid/26415877&rfr_iscdi=true