A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems
Summary Summary Background: Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently dev...
Gespeichert in:
Veröffentlicht in: | Applied clinical informatics 2015, Vol.6 (3), p.488-505 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 3 |
container_start_page | 488 |
container_title | Applied clinical informatics |
container_volume | 6 |
creator | Marceglia, S. Fontelo, P. Rossi, E. Ackerman, MJ |
description | Summary
Summary Background:
Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated “island systems”.
Objective:
Although much work has been done on patient’s access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care.
Methods:
Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform.
Results:
The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 – CDA2). In the process, the clinician “prescribes” the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage.
Conclusions:
The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient’s engagement in self-management and self-care.
Citation:
Marceglia S, Fontelo P, Rossi E, Ackerman MJ. A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems. Appl Clin Inform 2015;6: 488–505
http://dx.doi.org/10.4338/ACI-2014-12-RA-0115 |
doi_str_mv | 10.4338/ACI-2014-12-RA-0115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4586338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721354136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f69ef209f619afe1db0c828d4659e6d2045e4f300ac0eee36c84231b0dbe92de3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaWlCUl-QaDo2ItafVkrXwrukjYLgYRNcxZaabzrYFuuJAfy76tltyG5ZC4zMO-9ecxD6JLRb1II_b1ZrginTBLGybohlLHqAzplWtWECr74-Go-QRcpPdJSlWJaLz6jE66k1ItanqKpwffZjt5Gn8hPm8DjJrpdl8HlOQK-i2EKyfa4DRGvxgzbaHM3bvFdaTBmPFyD7fMON9OUcA74qi_MGMbO4eNmDS5Ej--fU4YhnaNPre0TXBz7GXr4dfVneU1ubn-vls0NccVaJq2qoeW0bhWrbQvMb6jTXHupqhqU51RWIFtBqXUUAIRyWnLBNtRvoOYexBn6cdCd5s0A3hWv0fZmit1g47MJtjNvN2O3M9vwZGSlVflwEfh6FIjh7wwpm6FLDvrejhDmZNiCM1FJJlSBigPUxZBShPblDKNmH5cpcZl9XIZxs27MPq7C-vLa4QvnfzgFwA-AvOtgAPMY5jiWn72r-g90g6LX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721354136</pqid></control><display><type>article</type><title>A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Marceglia, S. ; Fontelo, P. ; Rossi, E. ; Ackerman, MJ</creator><creatorcontrib>Marceglia, S. ; Fontelo, P. ; Rossi, E. ; Ackerman, MJ</creatorcontrib><description>Summary
Summary Background:
Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated “island systems”.
Objective:
Although much work has been done on patient’s access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care.
Methods:
Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform.
Results:
The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 – CDA2). In the process, the clinician “prescribes” the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage.
Conclusions:
The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient’s engagement in self-management and self-care.
Citation:
Marceglia S, Fontelo P, Rossi E, Ackerman MJ. A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems. Appl Clin Inform 2015;6: 488–505
http://dx.doi.org/10.4338/ACI-2014-12-RA-0115</description><identifier>ISSN: 1869-0327</identifier><identifier>EISSN: 1869-0327</identifier><identifier>DOI: 10.4338/ACI-2014-12-RA-0115</identifier><identifier>PMID: 26448794</identifier><language>eng</language><publisher>Germany: Schattauer GmbH</publisher><subject>Electronic Health Records ; Heart Failure - diagnosis ; Humans ; Mobile Applications - standards ; Monitoring, Physiologic ; Reference Standards ; Research Article ; Systems Integration ; Telemedicine - methods</subject><ispartof>Applied clinical informatics, 2015, Vol.6 (3), p.488-505</ispartof><rights>Copyright Schattauer 2015 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-f69ef209f619afe1db0c828d4659e6d2045e4f300ac0eee36c84231b0dbe92de3</citedby><cites>FETCH-LOGICAL-c448t-f69ef209f619afe1db0c828d4659e6d2045e4f300ac0eee36c84231b0dbe92de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586338/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586338/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,4028,27932,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26448794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marceglia, S.</creatorcontrib><creatorcontrib>Fontelo, P.</creatorcontrib><creatorcontrib>Rossi, E.</creatorcontrib><creatorcontrib>Ackerman, MJ</creatorcontrib><title>A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems</title><title>Applied clinical informatics</title><addtitle>Appl Clin Inform</addtitle><description>Summary
Summary Background:
Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated “island systems”.
Objective:
Although much work has been done on patient’s access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care.
Methods:
Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform.
Results:
The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 – CDA2). In the process, the clinician “prescribes” the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage.
Conclusions:
The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient’s engagement in self-management and self-care.
Citation:
Marceglia S, Fontelo P, Rossi E, Ackerman MJ. A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems. Appl Clin Inform 2015;6: 488–505
http://dx.doi.org/10.4338/ACI-2014-12-RA-0115</description><subject>Electronic Health Records</subject><subject>Heart Failure - diagnosis</subject><subject>Humans</subject><subject>Mobile Applications - standards</subject><subject>Monitoring, Physiologic</subject><subject>Reference Standards</subject><subject>Research Article</subject><subject>Systems Integration</subject><subject>Telemedicine - methods</subject><issn>1869-0327</issn><issn>1869-0327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1r3DAQFaWlCUl-QaDo2ItafVkrXwrukjYLgYRNcxZaabzrYFuuJAfy76tltyG5ZC4zMO-9ecxD6JLRb1II_b1ZrginTBLGybohlLHqAzplWtWECr74-Go-QRcpPdJSlWJaLz6jE66k1ItanqKpwffZjt5Gn8hPm8DjJrpdl8HlOQK-i2EKyfa4DRGvxgzbaHM3bvFdaTBmPFyD7fMON9OUcA74qi_MGMbO4eNmDS5Ej--fU4YhnaNPre0TXBz7GXr4dfVneU1ubn-vls0NccVaJq2qoeW0bhWrbQvMb6jTXHupqhqU51RWIFtBqXUUAIRyWnLBNtRvoOYexBn6cdCd5s0A3hWv0fZmit1g47MJtjNvN2O3M9vwZGSlVflwEfh6FIjh7wwpm6FLDvrejhDmZNiCM1FJJlSBigPUxZBShPblDKNmH5cpcZl9XIZxs27MPq7C-vLa4QvnfzgFwA-AvOtgAPMY5jiWn72r-g90g6LX</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Marceglia, S.</creator><creator>Fontelo, P.</creator><creator>Rossi, E.</creator><creator>Ackerman, MJ</creator><general>Schattauer GmbH</general><general>Schattauer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2015</creationdate><title>A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems</title><author>Marceglia, S. ; Fontelo, P. ; Rossi, E. ; Ackerman, MJ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f69ef209f619afe1db0c828d4659e6d2045e4f300ac0eee36c84231b0dbe92de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electronic Health Records</topic><topic>Heart Failure - diagnosis</topic><topic>Humans</topic><topic>Mobile Applications - standards</topic><topic>Monitoring, Physiologic</topic><topic>Reference Standards</topic><topic>Research Article</topic><topic>Systems Integration</topic><topic>Telemedicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marceglia, S.</creatorcontrib><creatorcontrib>Fontelo, P.</creatorcontrib><creatorcontrib>Rossi, E.</creatorcontrib><creatorcontrib>Ackerman, MJ</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied clinical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marceglia, S.</au><au>Fontelo, P.</au><au>Rossi, E.</au><au>Ackerman, MJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems</atitle><jtitle>Applied clinical informatics</jtitle><addtitle>Appl Clin Inform</addtitle><date>2015</date><risdate>2015</risdate><volume>6</volume><issue>3</issue><spage>488</spage><epage>505</epage><pages>488-505</pages><issn>1869-0327</issn><eissn>1869-0327</eissn><abstract>Summary
Summary Background:
Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated “island systems”.
Objective:
Although much work has been done on patient’s access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care.
Methods:
Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform.
Results:
The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 – CDA2). In the process, the clinician “prescribes” the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage.
Conclusions:
The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient’s engagement in self-management and self-care.
Citation:
Marceglia S, Fontelo P, Rossi E, Ackerman MJ. A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems. Appl Clin Inform 2015;6: 488–505
http://dx.doi.org/10.4338/ACI-2014-12-RA-0115</abstract><cop>Germany</cop><pub>Schattauer GmbH</pub><pmid>26448794</pmid><doi>10.4338/ACI-2014-12-RA-0115</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-0327 |
ispartof | Applied clinical informatics, 2015, Vol.6 (3), p.488-505 |
issn | 1869-0327 1869-0327 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4586338 |
source | MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Electronic Health Records Heart Failure - diagnosis Humans Mobile Applications - standards Monitoring, Physiologic Reference Standards Research Article Systems Integration Telemedicine - methods |
title | A Standards-Based Architecture Proposal for Integrating Patient mHealth Apps to Electronic Health Record Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T18%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Standards-Based%20Architecture%20Proposal%20for%20Integrating%20Patient%20mHealth%20Apps%20to%20Electronic%20Health%20Record%20Systems&rft.jtitle=Applied%20clinical%20informatics&rft.au=Marceglia,%20S.&rft.date=2015&rft.volume=6&rft.issue=3&rft.spage=488&rft.epage=505&rft.pages=488-505&rft.issn=1869-0327&rft.eissn=1869-0327&rft_id=info:doi/10.4338/ACI-2014-12-RA-0115&rft_dat=%3Cproquest_pubme%3E1721354136%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721354136&rft_id=info:pmid/26448794&rfr_iscdi=true |